Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{b}=\frac{21}{28}\)=> \(\frac{a}{b}=\frac{3}{4}\)=> \(\frac{a}{b}=\frac{3k}{4k}\)( \(k\inℤ,k\ne0\))
ƯCLN(a, b) = 15 => ƯCLN(3k, 4k) = 15
Mà ƯCLN(3k, 4k) = k
=> k = 15
=> a = 3 . 15 = 45
=> b = 4 . 15 = 60
=> \(\frac{a}{b}=\frac{45}{60}\)

Giải:
Ta cần chứng minh (a,b).[a,b]=ab(a,b).[a,b]=ab
Gọi d=(a,b)d=(a,b) thì {a=da′b=db′{a=da′b=db′ (1).(1). Trong đó (a′,b′)=1(a′,b′)=1
Đặt abd=m(2),abd=m(2), Ta cần chứng minh rằng [a,b]=m[a,b]=m
Để chứng minh điều này, cần chứng tỏ tồn tại các số tự nhiên x,yx,y sao cho m=ax,m=bym=ax,m=by v...

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu
Mình làm bài 4
Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp
Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1
Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n