\(n\in N\)để:

a) n > 0, n+ 1 chia hết cho n + 1

b) 6n + 5...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

\(a,\left(n+5\right)⋮\left(n+2\right)\)

\(\left(n+2+3\right)⋮\left(n+2\right)\)

\(\Rightarrow3⋮\left(n+2\right)\)

\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)

\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)

b,c,d Tự làm

* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)

Với p = 3k + 1

=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT

Với p = 3k + 2

=> p + 8 = 3k + 10 là SNT

=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .

Vậy p + 100 là hợp số

21 tháng 11 2015

n + 11 chia hết cho 5 + n

n + 5 + 6 chia hết cho 5 + n

5 + n thuộc  U(6) = {-6;-3;-2;-1;1;2;3;6}

Mà n là số TN 

Vậy n = 1

Tương tự

15 tháng 2 2021

n nguyên nhỉ ?

a) 13 - 2n chia hết cho 3n + 1

=> -6n + 39 chia hết cho 3n + 1

=> -6n - 2 + 41 chia hết cho 3n + 1

=> -2( 3n + 1 ) chia hết cho 3n + 1

Vì -2( 3n + 1 ) chia hết cho 3n + 1

=> 41 chia hết cho 3n + 1

đến đây dễ rồi 

b) \(\frac{n^2-n+1}{n-2}=\frac{n^2-2n+n-2+3}{n-2}=\frac{n\left(n-2\right)+\left(n-2\right)+3}{n-2}\)

\(=\frac{\left(n-2\right)\left(n+1\right)+3}{n-2}=\frac{\left(n-2\right)\left(n+1\right)}{n-2}+\frac{3}{n-2}=\left(n+1\right)+\frac{3}{n-2}\)

Vì n nguyên nên n + 1 nguyên

nên để \(\frac{n^2-n+1}{n-2}\)nguyên thì \(\frac{3}{n-2}\)nguyên

đến đây dễ rồi

c) 5n2 - 3n + 2 chia hết cho n - 2

=> 5n2 - 10n + 7n - 14 + 16 chia hết cho n - 2

=> 5n( n - 2 ) + 7( n - 2 ) + 16 chia hết cho n - 2

=> ( n - 2 )( 5n + 7 ) + 16 chia hết cho n - 2

Vì ( n - 2 )( 5n + 7 ) chia hết cho n - 2

=> 16 chia hết cho n - 2

đến đây dễ rồi

21 tháng 12 2020

biết rồi

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)