
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
a) ta có: \(B = \frac{n}{n - 3} = \frac{n - 3 + 3}{n - 3} = \frac{n - 3}{n - 3} + \frac{3}{n - 3}\)
Để B là số nguyên
\(\Rightarrow \frac{3}{n - 3} \in z\)
\(\Rightarrow 3 n - 3 \Rightarrow n - 3 \in Ư_{\left(\right. 3 \left.\right)} = \left(\right. 3 ; - 3 ; 1 ; - 1 \left.\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n \in \left(\right. 6 ; 0 ; 4 ; 2 \left.\right)\)
b) đề như z pải ko bn!
ta có: \(C = \frac{3 n + 5}{n + 7} = \frac{3 n + 21 - 16}{n + 7} = \frac{3. \left(\right. n + 7 \left.\right) - 16}{n + 7} = \frac{3. \left(\right. n + 7 \left.\right)}{n + 7} - \frac{16}{n + 7} = 3 - \frac{16}{n + 7}\)
Để C là số nguyên
\(\Rightarrow \frac{16}{n + 7} \in z\)
\(\Rightarrow 16 n + 7 \Rightarrow n + 7 \in Ư_{\left(\right. 16 \left.\right)} = \left(\right. 16 ; - 16 ; 8 ; - 8 ; 4 ; - 4 ; 2 ; - 2 ; 1 ; - 1 \left.\right)\)

