Tìm n thuộc N để : 2^n +15 là số Chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

Xét các trường hợp :
- Với n \(\ge\) 2 thì 2n chia hết cho 4 => 2n + 15 = 2n + 4 . 3 + 3 chia 4 dư 3 (sai vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) , loại 
- Với n =1 => 2n + 15= 17, loại
- Với n = 0 => 2n + 15=16 , chọn
Vậy n = 0 là thỏa mãn điều kiện để 2n + 15 là số chính phương. 

8 tháng 6 2015

Bài gải:

Chia n làm 3 trường hợp: 
Trườn hợp 1: n=0 
Trường hợp 2: n=1 
Trường hợp 3: n>1 
Với n>=2 thì 2^n chia hết cho 4=> 2^n + 15 chia 4 dư 3 ( vô lí vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) --> Loại. 
Với n=1 => 2^n+15= 17 --> Loại. 
Với n=0 => 2^n+15=16 --> Thỏa mãn. 
Vậy chỉ có n=0 là thỏa mãn điều kiện để 2^n+15 là số chính phương. 

21 tháng 11 2021

https://lazi.vn/users/dang_ky?u=dong.do-thi-thu

Đăng ký đi bn!

21 tháng 11 2021

1+100-589+345678923546576849=?

ĐỐ ĐẤY

19 tháng 8

Olm chào em. Đây là toán nâng cao chuyên đề đếm số cách sắp xếp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

Giải:

Chữ số lớn nhất là chữ số 9

Các số thỏa mãn đề bài có dạng: \(\overline{ab9ba}\)

Trong đó có 9 cách chọn a

Có 10 cách chọn b

Số các số thỏa mãn đề bài là:

9 x 10 = 90 (số)

Vậy tập hợp A có 90 phần tử


18 tháng 8

mình chưa rõ đề bn ơi

21 tháng 3 2020

Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Đặt UCLN(2n+7, 5n+2)=d

=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)

5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)

Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)

=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)

Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)

Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)

19 tháng 11 2017

( n + 1 ) n : 2 = aaa

( n + 1 ) n : 2 = a . 111 = a . 37 . 3 

=> Trong biểu thức trên tồn tại số 37 và 1 số chia hết cho 3

Giả sử n = 37

=> n + 1 = 38

Mà 38 không chia hết cho 3

=> n+1 = 37

=> n = 36 

Mà 36 chia hết cho 3 <=> giá trị n đúng 

Với n = 36 và n + 1 = 37 ta được ( n + 1 ) . n : 2 = 37 . 36 : 2 = 666 

=> a = 6

  Vậy n = 36 và a = 6 

1 tháng 7 2015

đặt  n^2+2006 là a^2

=>2006=a^2-n^2

<=>2006=(a+n)(a-n)

do 2006 là số chẵn =>(a-n)(a+n) là số chẵn 

=>a,n có cùng tính chẵn lẻ

=>a-n chia hết cho 2

a+n chia hết cho 2

=>(a-n)(a+n) chia hết cho 4

mà 2006 không chia hết cho 4

=> không tìm được số n thỏa mãn n^2+2006 là số chính phương

2 tháng 12 2021

giúp câu này với ạ 

20 tháng 7 2019

1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)

Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)

Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)

2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)

Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)

Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0

Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)

\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)

Như vậy, \(n< 5\)

Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)

Với \(n=2;1!+2!=5\left(KTM\right)\)

Với \(n=3;1!+2!+3!=9\left(TM\right)\)

Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)

Vậy n bằng 1 hoặc 3

3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)

Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố) 

\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)

\(\Leftrightarrow ab+b^2+bc+bd=pb\)

\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)

Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)

Vậy a+b+c+d là hợp số 

Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)

\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm) 

22 tháng 7 2019

Girl

Thank you =))