K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

20 tháng 9
\(72\cdot9^{n}=52488\)
=>\(9^{n}=\frac{52488}{72}=729\)
=>n=3

4 tháng 2 2016
Để 2n - 3 / 2n + 2 là phân số tối giản thì ƯC ( 2n - 3 , 2n + 2 ) = 1
=> 2n - 3 và 2n + 2 là hai số nguyên tố cùng nhau
Làm đến đây mik xin chịu

DD
Đoàn Đức Hà
Giáo viên
28 tháng 9 2021
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
ND
0

Đặt A = ( 2 . 22 ) + ( 3 . 23 ) + ( 4 . 44 ) + ............ + ( n . 2n )
A = ( 2 . 22 ) + ( 3 . 23 ) + [ 4(22)4 ] + ........... + ( n . 2n )
A = ( 2 . 22 ) + ( 3 . 23 ) + [ 4(28 ) ] + .............. + ( n . 2n )
2A = ( 2 . 23 ) + ( 3 . 24 ) + ( 4 . 29 ) + ........... + ( n . 2n+1 )
Sau đó bạn làm theo đây: Câu hỏi của Thái Hoàng Thục Anh
\(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=-2.2^2-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}\)
\(B=2^3+2^4+...+2^n \)
\(2B-B=2^{n+1}-2^3\)
\(\Rightarrow A=-2.2^2+2^3-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n+1}\)
\(\Rightarrow\left(n-1\right).2^{n+1}=2^n+11\)
Do \(\left(n-1\right).2^{n+1}\) luôn là số chẵn, \(2^n+11\) luôn là số lẻ nên không có n thỏa mãn