
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



sữa chỗ sai
she doesn't go to the cinema withus last Sunday
A B C D

Đặt \(n^2+2n+12=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+11=a^2\)
\(\Rightarrow\left(n+1\right)^2-a^2=-11\)
\(\Rightarrow\left(n+1-a\right)\left(n+1+a\right)=-11\)
Đến đây bạn xét ước của 11 nên tìm ra n dễ dàng.
P/S:Câu b tương tự.
a, Đặt \(n^2+2n+12=k^2\left(k\in N\right)\)
\(\Rightarrow\left(n^2+2n+1\right)+11=k^2\Rightarrow k^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\)
Ta thấy: \(k+n+1>k-n-1\) và \(k+n+1;k-n-1\in N\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\cdot1\)
Với \(k+n+1=11\Rightarrow k=6\)
Thay vào ta có: \(k-n-1=1\Rightarrow6-n-1=1\Rightarrow n=4\)

ta có n^3-n=n(n^2-1)=(n-1)n(n+1) chia hết cho 3
=> n^3-n+2 chia 3 dư 2
mà số chính phương chia 3 dư 0 hoặc 1 suy ra vô nghiệm
Ta có; \(n^3-n=n^2.n-n=\left(n^2-1hay1^2\right).n=\left(n-1\right)\left(n+1\right)n\)
Vì n-1 ; n ; n+1 là ba số liên tiếp nên trong ba số chắc chắn có một thừa số chia hết cho 3.
Vậy \(\left(n^3-n\right)⋮3\)suy ra n\(^3\)-n + 2 chia cho 3 dư 2.
SCP không chia cho 3 dư 2 nên không có n sao cho số trên là SCP!
A là số chính phương
đặt A = n^2 + 2n+ 1859 = a^2 ( a thuộc N ) ( vì a có mũ chẵn nên ta chỉ xét a thuộc N)
=> (n+1)^2 + 1858 = a^2
<=> a^2 - (n+1)^2 = 1858
<=> ( a+n+1)(a-n-1) = 1858
Vì n nguyên , a là số tự nhiên
=> a+n+1 và a-n-1 nguyên
=> a+n+1 và a-n-1 là ước của 1858
Mà a+n+1 + a-n-1 = 2a chẵn
=> a+n+1 và a-n-1 cùng chẵn
=> a+n+1 và a-n-1 là ước chẵn của 1858
Đến đây bạn tự làm tiếp nhoa
tk cho mk ~~