\(x^2+\dfrac{1}{x^2}+3x+\dfrac{3}{x}+m-2=0\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

\(D=m^2-1;D_x=m^2-1;D_y=0\)

Nếu \(D=m^2-1\ne0\Leftrightarrow m\ne\pm1\)

Hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(1;0\right)\)

Nếu \(D=m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

Hệ phương trình đã cho có vô số nghiệm

20 tháng 12 2020

làm ơn giúp mik với đi ạ

30 tháng 11 2022

a: =>x^2-8x+3-5+4m=0

=>x^2-8x+4m-2=0

\(\text{Δ}=\left(-8\right)^2-4\left(4m-2\right)\)

\(=64-16m+8=-16m+72\)

Để pt có hai nghiệm thì -16m+72>=0

=>-16m>=-72

=>m<=9/2

Theo đề, ta có:x1+x2<10

=>8/1<10

=>8<10(luôn đúng)

b: \(\text{Δ}=\left(-3\right)^2-4\left(-m+1\right)=9+4m-4=4m+5\)

Để phương trình có hai nghiệm thì 4m+5>=0

=>m>=-5/4

1/x1+1/x2=-4

=>\(\dfrac{x_2+x_1}{x_1x_2}=-4\)

=>\(\dfrac{3}{-m+1}=-4\)

=>-m+1=-3/4

=>m-1=3/4

=>m=7/4

10 tháng 2 2018

a) tử x^2 -8x +20 =(x-4)^2 +4 >0 mọi x => cần

mẫu <0 với mọi x

cần m<0

đủ (m+1)^2 -m(9m+4) <0

<=> m^2 +2m -1 >0

del(m) =1 +1 =2

m <=(-1 -can2)/2

ĐKXĐ: m<>-1

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(m-2\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-m-2\right)\)

\(=4m^2-8m+4-4m^2+4m-8\)

\(=-4m-4\)

Để phương trình có hai nghiệm phân biệt thì -4m-4>0

hay m<-1

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m-2}{m+1}\\x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\end{matrix}\right.\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)

\(\Leftrightarrow\left(\dfrac{2m-2}{m+1}\right)^2-6\cdot\dfrac{m-2}{m+1}=0\)

\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2-m-2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m^2+6m+12=0\)

\(\Leftrightarrow-2m^2-2m+16=0\)

\(\Leftrightarrow m^2-m-8=0\)

Đến đây bạn tự giải nhé

5 tháng 12 2021

PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(m-2\right)\left(m+1\right)\ge0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m+8\ge0\\ \Leftrightarrow12-4m\ge0\\ \Leftrightarrow m\le3\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)

\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-4\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=-4x_1x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2=-2x_1x_2\\ \Leftrightarrow\dfrac{4\left(m-1\right)^2}{\left(m+1\right)^2}=\dfrac{4-2m}{m+1}\\ \Leftrightarrow4\left(m-1\right)^2=\left(4-2m\right)^2\\ \Leftrightarrow4m^2-8m+4=16-16m+4m^2\\ \Leftrightarrow8m=12\Leftrightarrow m=\dfrac{3}{2}\left(tm\right)\)