Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)
\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )
b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)
\(\Leftrightarrow\left|2x-1\right|=5x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)
a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)
\(\Leftrightarrow x+3=4\)
\(\Rightarrow x=1\)

\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}=\sqrt{\left(x+1\right)^2}-\sqrt{\left(1-x\right)^2}\)
= | x+1 | - | 1-x | \(\ge\left|x+1+1-x\right|=\left|2\right|=2\)
dấu "=" xảy ra <=> \(\left(x+1\right)\left(1-x\right)\ge0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\1-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\1-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-1\\x\le1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\end{matrix}\right.\)
<=> \(-1\le x\le1\)
Vậy min C = 1 khi và chỉ khi \(-1\le x\le1\)

Làm hơi tắt xíu, có gì ko hiểu cmt nha :>
\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)
\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)
\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)
Câu cuối chưa nghĩ ra, sorry :<

a)\(\sqrt{3x+2}=2-\sqrt{3}\)
\(\Leftrightarrow3x+2=\left(2-\sqrt{3}\right)^2\)
\(\Leftrightarrow3x+2=7-4\sqrt{3}\)
\(\Leftrightarrow3x=7-2-4\sqrt{3}\)
\(\Leftrightarrow3x=5-4\sqrt{3}\)
\(\Leftrightarrow x=\dfrac{5}{3}-\dfrac{4\sqrt{3}}{3}\)
\(\Leftrightarrow x=\dfrac{5-4\sqrt{3}}{3}\)
b) \(\sqrt{x^2-4x+4}=49\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=49\)
\(\Leftrightarrow\left|x-2\right|=49\)\
\(\Leftrightarrow\left[{}\begin{matrix}x-2=49\\-x+2=49\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=51\\x=-47\end{matrix}\right.\)
c) \(\sqrt{x+1}=x-1\)
ĐKXĐ: \(x-1\ge0\Rightarrow x\ge1\)
\(\Leftrightarrow x+1=\left(x-1\right)^2\)
\(\Leftrightarrow x+1=x^2-2x+1\)
\(\Leftrightarrow-x^2+2x+x=-1+1\)
\(\Leftrightarrow3x-x^2=0\)
\(\Leftrightarrow x\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\x=3\left(nh\text{ậ}n\right)\end{matrix}\right.\)
d)e) lát mình làm sau

d) Bài này có thể dùng hằng đẳng thức rồi phá dấu GTTĐ nhưng theo em là khá mất công nên bình phương lên rồi quy về pt bậc 2 cho lẹ:)
PT \(\Leftrightarrow4x^2-4x+1=x^2-6x+9\)
\(\Leftrightarrow3x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-2\end{matrix}\right.\) (delta là ra:D)
Vậy..

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

a) \(\sqrt{x^2-6x+9}+x=11\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)
\(\Rightarrow x-3+x=11\)
\(\Rightarrow2x=14\Rightarrow x=7\)
Vậy........
b) \(\sqrt{3x^2-4x+3}=1-2x\)
\(3x^2-4x+3=1-4x+4x^2\)
\(3x^2-4x^2-4x+4x=-2\)
\(-x^2=-2\)
\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy.........
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Rightarrow2x-1=x-3\)
\(\Rightarrow x=1-3\)
\(\Rightarrow x=-2\)
Vậy x=-2

c)\(C=5+\sqrt{-4x^2-4x}\)
\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)
\(C=5+\sqrt{1-\left(2x+1\right)^2}\)
Ta có: \(-\left(2x+1\right)^2\le0\)
\(\sqrt{1-\left(2x+1\right)^2}\le1\)
\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)
Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)
\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
Mấy còn lại tương tự =)))

a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
c/ \(C=\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
\(=\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}\)
\(=|3-x|+|x+5|\ge|3-x+x+5|=8\)
d/ \(D=\sqrt{x^2-6x+9}+\sqrt{4x^2+24x+36}\)
\(=\sqrt{\left(x-3\right)^2}+\sqrt{4\left(x+3\right)^2}\)
\(=|3-x|+|x+3|+|x+3|\ge|3-x+x+3|+0=6\)
e/ \(2E=\sqrt{x^2}+2\sqrt{x^2-2x+1}\)
\(=\sqrt{x^2}+2\sqrt{\left(x-1\right)^2}\)
\(=|x|+|1-x|+|x-1|\ge|x+1-x|+0=1\)
\(\Rightarrow E\ge\frac{1}{2}\)