
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp

\(A=x^2+2x+3\)
=\(\left(x+1\right)^2+2\)
Với mọi x thì \(\left(x+1\right)^2>=0\)
=>\(\left(x+1\right)^2+2\)>=2
Để A=2 thì
\(\left(x+1\right)^2=0\)
=>\(x+1=0\)
=>\(x=-1\)
Vậy...
Các câu sau tương tự

Bài 2:
Ta có: \(\left(2x-1\right)^4\ge0\forall x\)
=>\(-\left(2x-1\right)^4\le0\forall x\)
=>\(A=-\left(2x-1\right)^4+5\le5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
=>2x=1
=>\(x=\frac12\)
Bài 1:
a: \(x^4\ge0\forall x\)
\(\left(y-\frac27\right)^6\ge0\forall y\)
Do đó: \(x^4+\left(y-\frac27\right)^6\ge0\forall x,y\)
=>\(x^4+\left(y-\frac27\right)^6-2019\ge-2019\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x=0\\ y-\frac27=0\end{cases}\Rightarrow\begin{cases}x=0\\ y=\frac27\end{cases}\)
b: \(\left(x-5\right)^2\ge0\forall x\)
\(\left|y-7\right|\ge0\forall y\)
Do đó: \(\left(x-5\right)^2+\left|y-7\right|\ge0\forall x,y\)
=>\(\left(x-5\right)^2+\left|y-7\right|+2000\ge2000\forall x,y\)
Dấu '=' xảy ra khi x-5=0 và y-7=0
=>x=5 và y=7
a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra <=> x-2=0 <=> x=2
Vậy MinA = -18 khi x=2
b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2
Vậy MaxB = 1/4 khi x=1/2
a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)
\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên \(2\left(x-2\right)^2\ge-18\)
Hay \(A\ge-18\)
Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)
\(x-2=0\)
\(x=2\)
b) \(B=x-x^2\)
\(=-x^2-x\)
\(=-\left(x^2-x\right)\)
\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)
\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x \)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)