Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)



\(H=\frac{1}{\left(x+1\right)^2+y^2+1}+\frac{1}{\left(y+1\right)^2+z^2+1}+\frac{1}{\left(z+1\right)^2+x^2+1}\)
\(\Leftrightarrow\)\(H=\frac{1}{\left(x+1\right)^2+\left(y+1\right)^2-2y}+\frac{1}{\left(y+1\right)^2+\left(z+1\right)^2-2z}+\frac{1}{\left(z+1\right)^2+\left(x+1\right)^2-2x}\)
Áp dụng BĐT AM-GM ta có:
\(H\le\frac{1}{2.\left(x+1\right)\left(y+1\right)-2y}+\frac{1}{2.\left(y+1\right)\left(z+1\right)-2z}+\frac{1}{2.\left(z+1\right)\left(x+1\right)-2x}\)
\(\Leftrightarrow H\le\frac{1}{2.\left(x+y+xy+1\right)-2y}+\frac{1}{2.\left(y+z+yz+1\right)-2z}+\frac{1}{2.\left(x+z+xz+1\right)-2x}\)
\(\Leftrightarrow H\le\frac{1}{2.\left(x+xy+1\right)}+\frac{1}{2.\left(y+yz+1\right)}+\frac{1}{2.\left(z+xz+1\right)}\)
\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{y+yz+1}+\frac{xyz}{xz\left(y+yz+1\right)}\right]\)
\(\Leftrightarrow H\le\frac{1}{2}\left[\frac{yz}{1+y+yz}+\frac{1}{y+yz+1}+\frac{y}{y+yz+1}\right]=\frac{1}{2}.1=\frac{1}{2}\)
Dấu " = " xảy ra <=> \(x=y=z=1\)
Vậy \(H_{max}=\frac{1}{2}\Leftrightarrow x=y=z=1\)

ta có: \((x+y+z)xyz=1 \)
\((x+y+z)x={1\over yz} \)
hay\(x^2+xy+xz={1\over yz}\)
Ta có:\((x+y)(x+z)=x^2+xz+xy+yz={1\over yz}+yz\)
Áp dụng Bdt Cauchy là ra!!

Ta có
\(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left[4\left(4-y-z\right)+yz\right]}\)
\(=\sqrt{x\left(4\left(x+\sqrt{xyz}\right)+yz\right)}\)
\(=\sqrt{4x^2+4x\sqrt{xyz}+xyz}\)
\(=2x+\sqrt{xyz}\)
Khi đó \(T=2\left(x+y+z\right)+3\sqrt{xyz}-\sqrt{xyz}=2.4=8\)
Áp dụng bất đẳng thức AM - GM:
\(A=xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\le\left(\frac{x+y+z}{3}\right)^3.\left(\frac{x+y+y+z+z+x}{3}\right)^3\)
\(=\left(\frac{1}{3}\right)^3.\left(\frac{2}{3}\right)^3=\frac{8}{729}\)
\(Max_A=\frac{8}{729}\Leftrightarrow x=y=z=\frac{1}{3}\)