Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3

a) \(A=\left(x^2-2.2x+4\right)-3\)
\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)
Vậy minA = -3 khi x = 2
b) \(B=4x^2+4x+11\)
\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)
\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)
Vậy min B = 10 khi x = -1/2
c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)
Vậy MinC= -36 khi x =0 và x = -5
d) \(D=2x^2+y^2-2xy+2x-4y+9\)
\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)
\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)
\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy min D = 4 khi x = 1 và y = 3

a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)

Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi
a) \(A=5x^2-4x+1\)
\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)
b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)
c) \(F=-2x^2-y^2+2xy+4x-40\)
\(F=-x^2-x^2-y^2+2xy+4x-40\)
\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)
\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)
\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)
\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)
\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
Bạn làm tương tự nhé

a) A = -x2 - 4x - 2 = -x2 - 4x - 4 + 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy AMax = 2 , đạt được khi x = -2
b) -2x2 - 3x + 5 = -2( x2 + 1/5x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -x2 - 2x - 1 + 9 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9, đạt được khi x = -1
d) D = 5 - 8x - x2 = -x2 - 8x - 16 + 21 = -( x2 + 8x + 16 ) + 21 = -( x + 4 )2 + 21
\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2+21\le21\)
Dấu " = " xảy ra <=> x + 4 = 0 => x = -4
Vậy DMax = 21 , đạt được khi x = -4
e) E = -3x( x + 3 ) - 7 = -3x2 - 9x - 7 = -3( x2 + 3x + 9/4 ) - 1/4 = -3( x + 3/2 )2 - 1/4
\(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
Dấu " = " xảy ra <=> x + 3/2 = 0 => x = -3/2
Vậy EMax = -1/4 , đạt được khi x = -3/2

\(A=-x^2+2x+3=-\left(x^2-2x-3\right)\)
\(=-\left(x^2-2x+1-4\right)\)
\(=-\left[\left(x-1\right)^2-4\right]=-\left(x-1\right)^2+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(B=-2x^2-4x=-2\left(x^2+2x\right)\)
\(=-2\left(x^2+2x+1-1\right)\)
\(=-2\left[\left(x+1\right)^2-1\right]=-\left(x+1\right)^2+2\le2\)
Vậy \(B_{max}=2\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(C=-x^2-6x+12=-\left(x^2+6x-12\right)\)
\(=-\left(x^2+6x+9-21\right)\)
\(=-\left[\left(x+3\right)^2-21\right]=-\left(x+3\right)^2+21\le21\)
Vậy \(C_{max}=21\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(D=-x^2+3x-1==-\left(x^2-3x+1\right)\)
\(=-\left(x^2-3x+\frac{9}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy \(D_{max}=\frac{5}{4}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
a)\(A=x^2-8x+9\)
\(A=x^2-8x+16-7\)
\(A=\left(x-4\right)^2-7\le-7\)
Dấu = xảy ra khi x - 4 = 0 ; x= 4
vậy Min A = -7 khi x =4