\(3x^2-4xy+2y^2-3x+2007\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

Ta có \(A=3x^2-4xy+2y^2-3x+2007\)

\(\Leftrightarrow A=(x^2-3x+\frac{9}{4})+2(x^2-2xy+y^2)+\frac{8019}{4}\)

\(\Leftrightarrow A=(x-\frac{3}{2})^2+2(x-y)^2+\frac{8019}{4}\)

Thấy \((x-\frac{3}{2})^2,(x-y)^2\geq 0\) nên \(A\geq \frac{8019}{4}\)

Vậy \(A_{\min}=\frac{8019}{4}\Leftrightarrow x=y=\frac{3}{2}\)

6 tháng 8 2017

Đặt \(A=3x^2-4xy+2y^2-3x+2007\)

       \(A=2x^2-4xy+2y^2+x^2-3x+2007\)

      \(A=2\left(x-y\right)^2+x^2-2.\frac{3}{2}+\frac{9}{4}+\frac{8019}{4}\)

        \(A=2\left(x-y\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

              Dấu = xảy ra khi \(\hept{\begin{cases}x-y=0\\x-\frac{3}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy Min A = \(\frac{8019}{4}\) khi \(x=y=\frac{3}{2}\)

25 tháng 12 2018

\(A=13x^2+y^2+4xy-2y-16x+2015\)

\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)

\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)

\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)

Đến đây bạn tự làm nốt nhé~

không làm được thì ib

22 tháng 6 2019

C= 2x+ 4y2 + 4xy - 3x -1

 = (x2 + 4xy + 4y2) + (x2 - 3x + 9/4) - 13/4

 = (x+2y)2 + (x-3/2)2 - 13/4

  (x+2y)2 >=0

    (x-3/2)2 >=0

=) MinC= -13/4  (dấu '=' xảy ra khi x=3/2 ; y=-3/4)

vậy ....

chúc bn hc tốt

22 tháng 6 2019

cảm ơn bạn

a) Ta có: \(M=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{31}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)

Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)

hay \(x=\frac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(M=x^2-3x+10\)\(\frac{31}{4}\) khi \(x=\frac{3}{2}\)

b) Ta có: \(N=2x^2+5y^2+4xy+8x-4y-100\)

\(=x^2+8x+16+x^2+4xy+4y^2+y^2-4y+4-120\)

\(=\left(x+4\right)^2+\left(x+2y\right)^2+\left(y-2\right)^2-120\)

Ta có: \(\left(x+4\right)^2\ge0\forall x\)

\(\left(x+2y\right)^2\ge0\forall x,y\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x+4\right)^2+\left(x+2y\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+4\right)^2+\left(x+2y\right)^2+\left(y-2\right)^2-120\ge-120\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}x+4=0\\x+2y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4+2y=0\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\2y=4\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(N=2x^2+5y^2+4xy+8x-4y-100\) là -120 khi x=-4 và y=2

3 tháng 3 2018

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

20 tháng 7 2018

Ta có:

\(C=2x^2+3y^2+4xy-8x-2y+18\)

\(C=2\left(x^2+2xy+y^2\right)+y^2-8x-2y+18\)

\(C=2[\left(x+y\right)^2-4\left(x+y\right)+4]+\left(y^2+6y+9\right)+1\)

\(C=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x+y=2\)và \(y=-3\)

Hay x = 5 , y = -3