K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
25 tháng 8

\(4x-x^2+1=-\left(x^2-4x+4\right)+5\)

\(=-\left(x-2\right)^2+5\le5\)

dấu = xảy ra khi x - 2 = 0 ⇒ x = 2

vậy biểu thức đạt GTLN là 5 tại x = 2

4xx2+1=−(x2−4x+4)+5

\(= - \left(\left(\right. x - 2 \left.\right)\right)^{2} + 5 \leq 5\)

dấu = xảy ra khi x - 2 = 0 ⇒ x = 2

vậy biểu thức đạt GTLN là 5 tại x = 2

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

3 tháng 7 2020

Bài làm:

+Tìm Min:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)

Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(Min=-1\Leftrightarrow x=-2\)

+Tìm Max:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)

3 tháng 7 2020

1 cách làm khác :3

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)

\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)

Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)

Điểm rơi khó chết luôn á :(

11 tháng 9 2016

Ta có : A=-x2+4x-3

=-x2+4x-4+1

=-(x2-4x+4)+1

=1-(x-2)2

Vì : (x-2)2\(\ge\)0\(\Rightarrow\)-(x-2)2\(\le\)0 , với mọi x.

Vậy giá trị lớn nhất của A bằng 1

Dấu "=" xảy ra khi (x-2)2=0\(\Rightarrow\)x-2=0\(\Rightarrow\)x=2

17 tháng 2 2021

Ta có : 

\(Q=\frac{3-4x}{x^2+1}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)

Dấu ''='' xảy ra <=> 2x + 1 = 0 <=> x = -1/2 

Vậy GTLN Q là 4 <=> x = -1/2 

17 tháng 2 2021

Ta có: \(Q=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Ta thấy: \(\frac{\left(2x+1\right)^2}{x^2+1}\ge0\Rightarrow4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)với \(\forall x\)

Dấu "=" xảy ra khi 2x+1=0<=>x=-1/2

Vậy MaxQ = 4 khi x=-1/2'

Đánh điện thoại lâu quá:vvvv

A Lớn nhất khi \(x^2-4x+9\)nhỏ nhất

Ta có : \(x^2-4x+9=\left(x^2-4x+4\right)+5\)

\(=\left(x-2\right)^2+5\)

MÀ \(\left(x-2\right)^2\ge0\)Với mọi \(x\)

\(\Rightarrow\left(x-2\right)^2+5\ge5\)Với mọi \(x\)

\(\Rightarrow A\le\frac{1}{5}\)

Dấu \("="\)xảy ra khi :

\(x-2=0\Rightarrow x=2\)

Vậy \(Max\)\(A\)\(=\frac{1}{5}\Leftrightarrow x=2\)

1 tháng 2 2021

\(A=\frac{1}{x^2-4x+9}\)

Ta có : \(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\)

Do đó : \(\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

Dấu ''='' xảy ra <=> x = 2 

Vậy GTLN A là 1/5 <=> x = 2

22 tháng 6 2019

\(B=12x-8y-4x^2-y^2+1\)

\(=-\left(4x^2-12x+y^2+8y-1\right)\)

\(=-\left[\left(4x^2-12x+9\right)+\left(y^2+8y+16\right)-24\right]\)

\(=\left[\left(2x-3\right)^2+\left(y+4\right)^2-24\right]\)

\(=-\left(2x-3\right)^2-\left(y+4\right)^2+24\)

\(\Rightarrow B_{max}=24\Leftrightarrow-\left(2x-3\right)^2-\left(y+4\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x-3=0\\y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}}\)

22 tháng 6 2019

Ta có:  B = 12x - 8y - 4x2 - y2 + 1 = (-4x2 + 12x - 9) - (y2 + 8y + 16) + 26 = -4(x2 - 3x + 9/4) - (y + 4)2 + 26 = -4(x - 3/2)2 - (y + 4)2 + 26

Ta luôn có: -4(x - 3/2)2 \(\le\) 0 \(\forall\) x (vì  4(x - 3/2)2 \(\ge\)0 \(\forall\)x)

             -(y + 4)2 \(\le\) 0 \(\forall\)y  (vì (y + 4)2 \(\ge\)\(\forall\) y)

=> -4(x - 3/2)2 - (y + 4)2 + 26 \(\le\) 26 \(\forall\)x,y

hay B \(\le\) 26 \(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{3}{2}=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}\)

Vậy Bmax = 26 tại x = 3/2 và y = -4

6 tháng 7 2016

bài 2 á. Nói rõ hơn đi bạn mình chưa hiểu

17 tháng 7 2018

\(E=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\)

vậy GTLN của E là 21 khi \(x=-4\)

\(F=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x-2\right)^2+5\le5\)

vay.............................................