Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B đạt giá trị lớn nhất \(\Leftrightarrow\frac{21}{8.\left|15x-21\right|+7}\) đạt GTLN
\(\Leftrightarrow8.\left|15x-21\right|+7\) đạt GTNN
Vì \(\left|15x-21\right|\ge0\left(\forall x\in Z\right)\)
Nên suy ra \(8.\left|15x-21\right|+7\ge7\)
Dấu "=" xảy ra <=> \(15x-21=0\Leftrightarrow15x=21\Leftrightarrow x=\frac{21}{15}=\frac{7}{5}\)
Vậy GTLN của biểu thức B = \(\frac{-1}{3}+\frac{21}{7}=\frac{8}{3}\) khi \(x=\frac{7}{5}\)
\(B=-\frac{1}{3}+\frac{21}{8\left|15x-21\right|+7}\le-\frac{1}{3}+\frac{21}{7}=-\frac{1}{3}+3=\frac{8}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow15x-21=0\)
\(\Leftrightarrow x=\frac{7}{5}\)
Vậy ........

Để \(\frac{1}{\left(x-2\right)^2+8}\) đạt giá trị lớn nhất
mà (x-2)^2 + 8 >= 0; 8 > 0 => (x-2)^2 + 8 >0
=> (x - 2 ) ^2 + 8 = 8
(x-2) ^2 = 0
x -2 = 0
x = 2
KL:x = 2 để 1/(x-2)^2+ 8 đạt giá trị lớn nhất ( giá trị lớn nhất của 1/(x-2)^2+8 = 1/8 )

Giải:
Ta có: A = \(\frac{2017-2n}{8n-4}\)
=> 4A = \(\frac{8068-8n}{8n-4}=\frac{-\left(8n-4\right)+8064}{8n-4}=-1+\frac{8064}{8n-4}\)
Để A đạt giá trị lớn nhất <=> 4A đạt giá trị lớn nhất
<=> \(-1+\frac{8064}{8n-4}\) đạt giá trị lớn nhất
<=> 8n - 4 đạt giá trị nhỏ nhất
Do n \(\in\)Z => 8n - 4 = 4 => 8n = 8 => n = 1
Thay n = 1 vào biểu thức 4A, ta được :
4A = \(-1+\frac{8064}{8.1-4}=-1+\frac{8064}{4}=-1+2016=2015\)
<=> A = \(\frac{2015}{4}\) <=> Max của A = 2015/4 tại n = 1


Đặt A=|x+5|+|x+2|+|x-7|+|x-8|
TH1: x<-5
=>x+5<0; x+2<0; x-7<0; x-8<0
=>A=-x-5-x-2-x+7-x+8=-4x+8
Vì A=-4x+8 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi x<-5 thì x sẽ không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất
TH2: -5<=x<-2
=>x+5>=0; x+2<0; x-7<0; x-8<0
=>A=x+5-x-2-x+7-x+8=-2x+18
Vì A=-2x+18 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi -5<=x<-2 thì x sẽ không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất
TH3: -2<=x<7
=>x+5>0; x+2>=0; x-7<0; x-8<0
=>A=x+5+x+2-x+7-x+8=22
=>\(A_{\min}=22\) khi -2<=x<7(1)
TH4: 7<=x<8
=>x+5>0; x+2>0; x-7>=0; x-8<0
=>A=x+5+x+2+x-7+8-x=2x+8
Vì A=2x+8 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Với 7<=x<8 thì \(x_{\min}=7\)
=>\(A_{\min}=2\cdot7+8=14+8=22\) (2)
TH5: x>=8
=>x+5>0; x+2>0; x-7>0; x-8>=0
=>A=x+5+x+2+x-7+x-8=4x-8
Vì hàm số A=4x-8 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi x>=8 thì \(x_{\min}=8\)
=>\(A_{\min}=4\cdot8-8=32-8=24\) (3)
Từ (1),(2),(3) suy ra \(A_{\min}=22\) khi -2<=x<=7
\(M=\frac{44}{\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|}\)
=>\(M=\frac{44}{A}\le\frac{44}{22}=2\forall x\)
Dấu '=' xảy ra khi -2<=x<=7
Ta có
trị tuyệt đối của 15x-2 \(\ge0\)
=>8 nhân trị tuyệt đối của 15x-2\(\ge0\)
=>8 nhân trị tuyệt đối của 15x-2 +7 lớn hơn hoặc bằng 7
=>\(\frac{21}{8\left(15x-2\right)+7}\le3\)
=>Ans+\(+-\frac{1}{3}\le\frac{8}{3}\)
Dấu bằng xảy ra<=>x=2/15
nhớ tick nha