K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Ta có

x+x3+x9+x27+x81=(x2−1)P(x)+ax+bx+x3+x9+x27+x81=(x2−1)P(x)+ax+b (1)

ax+bax+b là dư

thay x=1x=1 vàx=−1x=−1  lần lượt vào (1) ta tìm được a,ba,b 

30 tháng 9 2016

À thôi làm đc r,mn ko cần làm nữa
 

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....

29 tháng 3 2021

có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5

f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2

do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a

21 tháng 8 2018

b) f(x) = x(x+5) = 0

=>\(\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)

Vậy x=0 và -5

c) f(x) =x2 + 8x = 0

=>x*(x+8)=0

=>\(\orbr{\begin{cases}x=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-8\end{cases}}}\)

Vậy x=0 và -8

21 tháng 8 2018

a)\(f\left(x\right)=3\sqrt{2}-x-9\sqrt{2}=0\)

\(\Leftrightarrow-6\sqrt{2}-x=0\Leftrightarrow x=-6\sqrt{2}\)

b)\(f\left(x\right)=x\left(x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-5\end{cases}}}\)

c)\(f\left(x\right)=x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x+8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-8\end{cases}}}\)

d)\(f\left(x\right)=x^2+8x+6=0\)

\(\Leftrightarrow x\left(x+8\right)=-6\)

<=>Khi x=-6 thì x+8=1(ko thõa mãn)

Khi x=-1 thì x+8=6(ko thõa mãn)

Khi x=1 thì x+8=-6(ko thõa mãn)

Khi x=6 thì x+8=-1(ko thõa mãn)

Vậy phương trình đã cho vô nghiệm

e)\(f\left(x\right)=x^2+2018x+2017=0\)

ta có : x2>0 =>2018x+2017=-x2

<=>2018x+x2=-2017

<=>x(2018+x)=-2017

<=>x=-1

vậy phương trình đã cho có ngiệm là S={-1}

i)\(f\left(x\right)=x^2+5=0\)

\(\Leftrightarrow x^2=-5\Leftrightarrow\hept{\begin{cases}x=-\sqrt{5}\\x=\sqrt{5}\end{cases}}\)

bạn tự kết luận nhé

18 tháng 3 2021

Áp dụng định lý Bezout ta được:

f(x)f(x)chia cho x+1 dư 2 f(1)=2⇒f(−1)=4

Vì bậc của đa thức chia là 3 nên f(x)=(x+1)(x2+1)q(x)+ax2+bx+cf(x)=(x+1)(x2+1)q(x)+ax2+bx+c

=(x2+1)(x+1)q(x)+(ax2+a)a+bx+c=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c

=(x2+1)(x+1)q(x)+a(

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :)))