TÌM CHỮ SỐ TẬN CÙNG CỦA LUỸ T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

9999 = 9924 . 4 + 3 = ( 994)24 . 993 = (...1)24 = (...1) . 993 = (...1) . (...9) = (...9)

Vậy chữ số tận cùng của 9999 là 9.

HT~

25 tháng 8

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36

= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36

= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36

= x² + y² + 36

b) Do x² ≥ 0 với mọi x ∈ R

y² ≥ 0 với mọi x ∈ R

Q = x² + y² + 36 ≥ 36 với mọi x ∈ R

Q nhỏ nhất khi x² + y² = 0

⇒ x = y = 0

Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

a: Xét ΔMAD và ΔMBE có

\(\hat{AMD}=\hat{BME}\) (hai góc đối đỉnh)

MA=MB

\(\hat{MAD}=\hat{MBE}\) (hai góc so le trong, AD//BE)

Do đó: ΔMAD=ΔMBE

=>AD=BE

Xét tứ giác ADBE có

AD//BE

AD=BE

Do đó: ADBE là hình bình hành

b: Ta có: AD=BE

AD=BC

Do đó: BE=BC

=>B là trung điểm của CE

27 tháng 10 2016

Bài 1:

1 (x+3)2=x2+6x+9

2

a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3

b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x

Bài 2:

a, x2-25x=0

\(\Leftrightarrow x\left(x-25\right)=0\)

\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)

b, (4x-1)2-9=0

\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)

\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)

\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)

\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)

Bài 3:

a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2

b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)

c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)

Bài 4:

a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)

=2x-1/2 + 2/3y

b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho

Bài 5 :

b, A = x(2x-3)

A= 2x2-3x

A= 2(x2-3/2x)

A= 2(x2-2x3/4+9/16-9/16)

A=2[(x-3/4)2-9/16]

A=2(x-3/4)2-9/8

A=2(x-3/4)2+(-9/8)

Vì (x-3/4)2 \(\ge\)0 \(\forall x\)

-> 2(x-3/4)2 \(\ge0\forall x\)

-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)

Vậy MinA= -9/8

6 tháng 1 2017

Bài 1:

1. Khai triển hằng đẳng thức

(x+3)2 = x2+6x+9

2. Thực hiện phép tính

a) 2x2(3x-5x3)+10x5-5x3

=6x3-10x5+10x5-5x3

=x3

b)(x+3)(x2-3x+9)+(x-9)(x+3)

=(x3+27)+(x2+3x-9x-27)

=x3+27+x2+3x-9x-27

=x3+x2-6x

Bài 2:

a) x2-25x=0

\(\Leftrightarrow\)x(x-25)=0

\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)

Vậy x=0 hoặc x=25

b)(4x-1)2 - 9=0

\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0

\(\Leftrightarrow\)(4x+2)(4x-4)=0

\(\Leftrightarrow\)2(2x+1)(2x-2)=0

\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)

Vậy x=1 hoặc x=\(\frac{-1}{2}\)

Bài 3:

a) 3x2-18x+27

=3(x2-6x+9)

=3(x-3)2

b) xy-y2-x+y

=(xy-y2)-(x-y)

=y(x-y)-(x-y)

=(x-y)(y-1)

c) x2-5x-6

=x2-6x+x-6

=(x2-6x)+(x-6)

=x(x-6)+(x-6

=(x-6)(x+1)

Bài 4:

a) (12x3y3-3x2y3+4x2y4) : 6x2y3

=x2y3(12x-3+4y): 6x2y3

=(12x-3+4y) : 6

= (12x : 6)-(3 : 6)+(4y : 6)

=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)

b) (6x3-19x2+23x-12) : (2x-3)

=(3x2-5x+4)(2x-3) : (2x-3)

=3x2-5x+4

27 tháng 9

Cức chó cức trâu

27 tháng 9

1. Chứng minh AI=2DH


Bước 1: Tính các góc và xác định độ dài đoạn thẳng.

  • Vì ABCD là hình bình hành nên AB // DC∠D+∠A=180∘. ∠D=180∘−∠A=180∘−120∘=60∘
  • DI là tia phân giác của ∠D nên: ∠CDI=∠ADI=2∠D​=260∘​=30∘
  • AB // DCDI là cát tuyến nên ∠AID=∠CDI (hai góc so le trong). ∠AID=30∘
  • Trong △ADI, ta có ∠AID=30∘ và ∠ADI=30∘. Do đó, △ADI là tam giác cân tại A. AD=AI
  • Vì ABCD là hình bình hành nên AD = BCAB = DC.
  • I là trung điểm của AB nên AI=2AB​. Từ đó suy ra: AD=AI=2AB​

Bước 2: Xét △ADH.

  • Ta có AH⊥DC (theo giả thiết), nên △ADH là tam giác vuông tại H.
  • Trong hình bình hành, ∠ADC=∠D=60∘.
  • Trong tam giác vuông ADH, ta có: cos(∠ADH)=ADDH​ cos(60∘)=ADDH​ 21​=ADDH​ AD=2DH

Bước 3: Kết luận.

  • Từ AI=AD (chứng minh ở Bước 1) và AD=2DH (chứng minh ở Bước 2), ta suy ra: AI=2DH(Điều phải chứng minh)


2. Chứng minh DI=2AH


Bước 1: Xét △ADH.

  • △ADH là tam giác vuông tại H. Ta đã biết ∠D=60∘.
  • Ta có: sin(∠ADH)=ADAH​ sin(60∘)=ADAH​ 23​​=ADAH​ AD=3​2AH​(∗)

Bước 2: Xét △ADI.

  • Trong △ADI, ta có ∠DAI=∠DAB=120∘. AD=AI và ∠ADI=30∘. ∠DAI=180∘−(∠AID+∠ADI)=180∘−(30∘+30∘)=120∘
  • Áp dụng Định lý Sin cho △ADI: sin(∠DAI)DI​=sin(∠AID)AD​ sin(120∘)DI​=sin(30∘)AD​ 23​​DI​=21​AD​ DI⋅3​2​=AD⋅2 DI=AD⋅3​(∗∗)

Bước 3: Kết luận.

  • Thay (∗) vào (∗∗), ta được: DI=(3​2AH​)⋅3 DI=2AH(Điều phải chứng minh)


3. Chứng minh AC vuông góc với AD


Bước 1: Tính độ dài các cạnh liên quan đến △ADC.

  • Ta có AI=AD và I là trung điểm AB. Suy ra AD=2AB​.
  • Vì ABCD là hình bình hành nên DC=AB. Do đó DC=2AD.

Bước 2: Xét △ADC.

  • Ta có △ADC với:
    • DC=2AD
    • ∠ADC=60∘
  • Áp dụng Định lý Cosin để tính AC2: AC2=AD2+DC2−2⋅AD⋅DC⋅cos(∠ADC) AC2=AD2+(2AD)2−2⋅AD⋅(2AD)⋅cos(60∘) AC2=AD2+4AD2−4AD2⋅21​ AC2=5AD2−2AD2 AC2=3AD2

Bước 3: Kiểm tra tính vuông góc.

  • Để AC⊥AD thì △ADC phải vuông tại A. Khi đó, theo định lý Pytago, ta cần có AD2+AC2=DC2.
  • Thay các giá trị đã tính: AD2+AC2=AD2+3AD2=4AD2
  • Và DC2=(2AD)2=4AD2.
  • Vì AD2+AC2=DC2 (4AD2=4AD2), nên △ADC là tam giác vuông tại A.
  • Do đó, AC⊥AD. (Điều phải chứng minh)
26 tháng 9 2016

A B C D M H E 12 12 6

Gọi E là điểm kéo dài của BH , cắt AC tại E

Dễ thấy ABE là tam giác cân => AB = AE = 12 cm

Mà AC = 18 cm => EC = 6 cm

Ta có HM là đường trung bình của tam giác BEC

=> HM = 1/2EC = 3cm

26 tháng 9 2016

Ngọc giỏi quá