
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)
\(\Rightarrow ab=5k\cdot6k=30k^2\)
\(\Rightarrow30k^2=3000\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}a=5\cdot10=50\\b=6\cdot10=60\\c=7\cdot10=70\end{cases}}\)
b, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{a^2-b^2+c^2}{25-36+49}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{152}{38}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow4=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\hept{\begin{cases}a^2=4\cdot25=100\\b^2=4\cdot36=144\\c^2=4\cdot49=196\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\pm10\\b=\pm12\\c=\pm14\end{cases}}\)

a)độ dài đoạn AC=4+3=7cm
b)\(\widehat{DBC}\)sẽ bằng :55-30=25,vì \(\widehat{ABC}\)=55 độ mà \(\widehat{ABD}\)=33 độ nên \(\widehat{DBC}\)=55 độ
còn câu c,d mai mình giải.

a: 2n+4 là bội của n-1
=>2n+4⋮n-1
=>2n-2+6⋮n-1
=>6⋮n-1
=>n-1∈{1;-1;2;-2;3;-3;6;-6}
=>n∈{2;0;3;-1;4;-2;7;-5}
mà n là số tự nhiên
nên n∈{2;0;3;4;7}
b: 2n-1 là ước của 3n+2
=>3n+2⋮2n-1
=>6n+4⋮2n-1
=>6n-3+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
mà n là số tự nhiên
nên n∈{1;0;4}
c: n-1 là ước của \(n^2+1\)
=>\(n^2+1\vdots n-1\)
=>\(n^2-n+n-1+2\vdots n-1\)
=>\(2\vdots n-1\)
=>n-1∈{1;-1;2;-2}
=>n∈{2;0;3;-1}
mà n là số tự nhiên
nên n∈{2;0;3}
d: \(n^2+3n+15\) là bội của n+3
=>\(n^2+3n+15\vdots n+3\)
=>n(n+3)+15⋮n+3
=>15⋮n+3
=>n+3∈{1;-1;3;-3;5;-5;15;-15}
=>n∈{-2;-4;0;-6;2;-8;12;-18}
mà n là số tự nhiên
nên n∈{0;2;12}

a: 2n+4 là bội của n-1
=>2n+4⋮n-1
=>2n-2+6⋮n-1
=>6⋮n-1
=>n-1∈{1;-1;2;-2;3;-3;6;-6}
=>n∈{2;0;3;-1;4;-2;7;-5}
mà n là số tự nhiên
nên n∈{2;0;3;4;7}
b: 2n-1 là ước của 3n+2
=>3n+2⋮2n-1
=>6n+4⋮2n-1
=>6n-3+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
mà n là số tự nhiên
nên n∈{1;0;4}
c: n-1 là ước của \(n^2+1\)
=>\(n^2+1\vdots n-1\)
=>\(n^2-n+n-1+2\vdots n-1\)
=>\(2\vdots n-1\)
=>n-1∈{1;-1;2;-2}
=>n∈{2;0;3;-1}
mà n là số tự nhiên
nên n∈{2;0;3}
d: \(n^2+3n+15\) là bội của n+3
=>\(n^2+3n+15\vdots n+3\)
=>n(n+3)+15⋮n+3
=>15⋮n+3
=>n+3∈{1;-1;3;-3;5;-5;15;-15}
=>n∈{-2;-4;0;-6;2;-8;12;-18}
mà n là số tự nhiên
nên n∈{0;2;12}

a) Ta có : \(0< \left|x+1\right|\le3\)
\(\Rightarrow\left|x+1\right|\in\left\{1;2;3\right\}\)
\(\Rightarrow x+1\in\left\{-1;1;-2;2;-3;3\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-4;2\right\}\)
b) Ta có : \(0< \left|x\right|< 3\)
\(\Rightarrow\left|x\right|\in\left\{1;2\right\}\)
\(\Rightarrow x\in\left\{\pm1;\pm2\right\}\)
c) Ta có : \(-3\le\left|x+1\right|\le3\)
\(\Rightarrow\left|x+1\right|\in\left\{0;1;2;3\right\}\)
\(\Rightarrow x+1\in\left\{0;-1;1;-2;2;-3;3\right\}\)
\(\Rightarrow x\in\left\{-1;-2;0;-3;1;-4;2\right\}\)

UCLN(a, b) = 15 => a= 15m, b = 15n (m, n khác 0 ) [1]
BCNN(a,b)= 300. Mà a.b= BCNN(a,b). UCLN(a,b) nên ta có
a.b= 300.15=4500 [2]
Từ 1 và 2 ta có 15m.15n= 4500
225.mn= 4500
=> mn=20=4.5=1.20
với m=4 , n=5 thì a=60, b= 75
với m=1 , n=20 thì a=15 , b=300
Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15
Suy ra: a.b = 300.15 = 4500
Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500
15.15.m.n =4500
15^2.m.n =4500
225.m.n =4500
=> m.n = 20
Suy ra: m=1 và n=20 hoặc m=4 và n=5.
Mà m+1 =n =>m=4 và n =5.
Vậy: a= 15.4= 60 ; b= 15.5= 75.
Đáp án cần chọn là: A
Ta có
|a|+|b|≥0 với mọi a,b
Dấu bằng xảy ra khi và chỉ khi |a|=0;|b|=0
Nên a=0;b=0