Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lớp 6 làm gì đã học đồng dư vậy bạn ?
Bài giải
\(A=2^{2013}+3^{2016}=\text{ ( }2^{2012}\cdot2 )=\left[\left(2^4\right)^{2012}\cdot2\right]+\left(3^4\right)^{504}=\left[\overline{\left(...6\right)}^{2012}\cdot2\right]+\overline{\left(...1\right)}^{504}\)
\(=\left[\overline{\left(...6\right)}\cdot2\right]+\overline{\left(...1\right)}=\overline{\left(...2\right)}+\overline{\left(...1\right)}=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của A là 3
Vì
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
.......
=> 22013 = .........8
Vì
31 = 3
32 = 9
33 = 27
34 = 81
35 = 243
36 = 729
.............
=> 32014 = ........1
Cộ vế tương ứng
22013 + 32014
= .......8 + ......1
= ..........9
Study well

S=1+2+22+23+.....+297+298+299
S=20+2+22+23+.....+297+298+299
2S=2.(20+2+22+23+.....+297+298+299)
2S=21+22+23+24+....+298+299+2100
2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)
S=2100-20
S=2100-1
bS=1+2+22+23+.....+297+298+299
S=(1+2)+(22+23)+...+(296+297)+(298+299)
S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)
S=3+22.3+....+296.3+298.3
S=3.(1+22+.....+296+298)\(⋮\)3
Vậy S\(⋮\)3
c Ta có:S=2100-1
2100=24.25=(24)25
Ta có: 24 tân cùng là 6
=>(24)25 tận cùng là 6
Hay 2100=(24)25 tận cùng là 6
=>2100-1 tận cùng là 5
Vậy S tận cùng là 5
Chúc bn học tốt

A=2+22+23+............+220
2A=22+23+24+............+221
2A-A=221-2
A=221-2=(24)5.2-2=165.2-2=.........6.2-2=.............2-2=..............0

b) Ta có :
B = 31 + 32 + 33 +...+ 3300
B = (31 + 32 + 33 + 34) + ... + (3297 + 3298 + 3299 + 3300)
B = 120 +....+ (31 + 32 + 33 + 34) . 3296
B = 120 +...+ 120 . 3296
B = 120 . (1 + .... + 3296)
Mà 120 \(⋮\)2 nên B \(⋮\)2
\(\Rightarrow\)(đpcm)
c) Theo b) B \(⋮\)120 mà 120\(⋮\)10 nên B \(⋮\)10 hay B tận cùng là 0 (1)
Theo a) thì A tận cùng là 0 (2)
Từ (1) và (2), ta có :
B - A = (.....0) - (.....0)
= (......0) \(⋮\)5
\(\Rightarrow\)(đpcm)
b) Ta có : \(B=3+3^2+3^3+...+3^{300}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{299}+3^{300}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{299}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{299}.4\)
\(=4\left(3+3^3+...+3^{299}\right)⋮2\)
\(\Rightarrowđpcm\)
c) Ta có : \(B=3+3^2+3^3+...+3^{300}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{297}+3^{298}+3^{299}+3^{300}\right)\)
\(=\left(3+3^2+3^3+3^4\right)+...+3^{296}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.120+...+3^{296}.120\)
\(=120\left(1+3^4+...+3^{296}\right)⋮10\)
Mà A có chữ số tận cùng là 0 (theo phần a)
\(\Rightarrow A⋮10\)
\(\Rightarrow B-A⋮10\)
Nhưng \(10⋮5\)
\(\Rightarrow B-A⋮5\)
\(\Rightarrowđpcm\)

1035 +2 = 100..........2 chia hết cho 3 vì (1+0+0+..........+0+2 =3 chia hết cho 3)
9999... có tận cùng là 9

ta có 888 mũ 2 = .....4 ma 888 mũ 88chắc chắn là số chẵn suy ra 888 mũ 88=2k với k thuộc N.Do đó 888 mũ 88 mũ =888 mũ 2k=888 mũ 2 mũ ktuwf trên ta có 888 mũ 88 mũ 8=.....4 mũ k
\(888^{88^8}=888^{\left(88^8\right)}=888^{\left(...6\right)}=\left(...4\right)\)

Bài 6:
Với \(a=0\), ta có \(10^0+168=1+168=169=13^2\) , do đó ta tìm được cặp \(\left(a,b\right)=\left(0,13\right)\).
Với \(a\ge1\) thì \(10^{a}\) có chữ số tận cùng là 0, do đó \(10^{a}+168\) sẽ có chữ số tận cùng là 8, trong khi vế phải \(b^2\) lại là một số chính phương không thể có chữ số tận cùng là 8, mâu thuẫn. Vậy với \(a\ge1\) thì không có cặp \(\left(a,b\right)\) thỏa mãn điều kiện đã cho.
Vậy ta tìm được cặp số \(\left(a,b\right)\) duy nhất là \(\left(0,13\right)\).
Ta có:
\(1980=20.99\)
=> \(A=17^{1980}=17^{20.99}=\left(17^{20}\right)^{99}\equiv1^{99}\equiv1\left(mod100\right)\)
Hai chữ số tận cùng của A là 01