Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số học sinh của trường đó là : a (a E N*) 1700 < a < 2000
Vì học sinh xếp thành 18 hàng, 20 hàng, 25 hàng đều dư 3 hoc sinh
Nên a - 3 chia hết cho 18;20;25 (1700 < a < 2000)
Vậy a - 3 thuộc BC(18;20;25)
Mà BCNN(18;20;25) = 900
Nên BC(18;20;25) = {900;1800;2700;3600; ............ }
Điều kiện đề bài 1700 < a < 2000
Nên a = 1800
Vậy >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>



\(\frac{3^2}{5\cdot14}+\frac{3^2}{7\cdot18}+\frac{3^2}{9.22}+\frac{3^2}{11\cdot26}+\frac{3^2}{13\cdot30}\)
\(=3^2\cdot\left(\frac{1}{5\cdot14}+\frac{1}{7\cdot18}+\frac{1}{9\cdot22}+\frac{1}{11\cdot26}+\frac{1}{13\cdot30}\right)\)
\(=9\cdot\frac{1}{2}\cdot\left(\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\right)\)
\(=\frac{9}{2}\cdot\frac{1}{2}\cdot\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\right)\)
\(=\frac{9}{4}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{9}{4}\cdot\left(\frac{1}{5}-\frac{1}{15}\right)\)
\(=\frac{9}{4}\cdot\frac{2}{15}\)
\(=\frac{3}{10}\)

Câu 3 :
a) Đặt n2 + 2006 = a2 (a\(\in\)Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=>a + n và a - n có cùng tính chẵn lẻ
+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k \(\in\)N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
Vậy n2 + 2006 là hợp số