Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mk cx bị thế nè, nhưng hôm nay hình đại diện của mk thì ổn rồi.


a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\hat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
=>\(\frac{AE}{AF}=\frac{AB}{AC}\)
=>\(\frac{AE}{AB}=\frac{AF}{AC}\)
=>\(AE\cdot AC=AF\cdot AB\)
b: Xét ΔAEF và ΔABC có
\(\frac{AE}{AB}=\frac{AF}{AC}\)
góc EAF chung
Do đó: ΔAEF~ΔABC
=>\(\hat{AEF}=\hat{ABC}\)
c: Ta có: ΔBEM vuông tại E
mà EI là đường trung tuyến
nên IE=IB
=>ΔIBE cân tại I
=>\(\hat{IEB}=\hat{IBE}\)
mà \(\hat{FEB}=\hat{IBE}\) (hai góc so le trong, FE//BM)
nên \(\hat{FEB}=\hat{IEB}\)
=>EB là phân giác của góc FED
Gọi K là giao điểm của AH và BC
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC tại K
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\hat{FHB}=\hat{EHC}\) (hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\frac{HF}{HE}=\frac{HB}{HC}\)
=>\(\frac{HF}{HB}=\frac{HE}{HC}\)
Xét ΔHFE và ΔHBC có
\(\frac{HF}{HB}=\frac{HE}{HC}\)
góc FHE=góc BHC
Do đó: ΔHFE~ΔHBC
=>\(\hat{HEF}=\hat{HCB}\)
mà \(\hat{HCB}=\hat{BAK}\left(=90^0-\hat{ABC}\right)\)
nên \(\hat{HEF}=\hat{BAK}\) (1)
Xét ΔHEA vuông tại E và ΔHKB vuông tại K có
\(\hat{EHA}=\hat{KHB}\) (hai góc đối đỉnh)
Do đó: ΔHEA~ΔHKB
=>\(\frac{HE}{HK}=\frac{HA}{HB}\)
=>\(\frac{HE}{HA}=\frac{HK}{HB}\)
Xét ΔHEK và ΔHAB có
\(\frac{HE}{HA}=\frac{HK}{HB}\)
góc EHK=góc AHB
Do đó: ΔHEK~ΔHAB
=>\(\hat{HEK}=\hat{HAB}=\hat{BAK}\left(2\right)\)
TỪ (1),(2) suy ra \(\hat{HEK}=\hat{HEF}\)
=>EB là phân giác của góc FEK
mà EB là phân giác của góc FED
và EK và ED có điểm chung là E; D và K đều nằm trên cạnh BC
nên K trùng với D
=>A,H,D thẳng hàng

\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)
Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)
Thế vào \(x_1x_2=3m+1\)
\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)
\(\Rightarrow m=2\) (thỏa mãn)
Kb đi
Cho face ik