K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

MV
19 tháng 10 2021
Ta có :
ab chia hết cho 5
=> b = 0 hoặc 5
Mà ab không chia hết cho 2
=> b = 5
Ta lại có :
a + b = 6
a = 6 - b = 6 - 5 = 1
Vậy số cần tìm là a = 1 và b = 5
(Nếu mình sai thì sorry nha)
19 tháng 10 2021
Ta có :
ab chia hết cho 5
=> b = 0 hoặc 5
Mà ab không chia hết cho 2
=> b = 5
Ta lại có :
a + b = 6
a = 6 - b = 6 - 5 = 1
Vậy số cần tìm là a = 1 và b = 5
HT
Số \(A\) có dạng (vì các chữ số là \(1 , 0 , 1 , 0 , \ldots , 1\) với \(n\) chữ số \(1\))
\(A=\sum_{k=0}^{n-1}10^{2k}=1+10^2+10^4+\ldots+10^{2\left(\right.n-1\left.\right)}=\frac{100^{\textrm{ } n} - 1}{100 - 1}=\frac{100^{\textrm{ } n} - 1}{99}.\)(a) \(A\) chia hết cho \(99\).
\(100^{n} - 1 \equiv 0 \left(\right. m o d 99^{2} \left.\right) .\)Ta cần \(\frac{100^{n} - 1}{99} \equiv 0 \left(\right. m o d 99 \left.\right)\), tức là
Viết \(100 = 1 + 99\). Theo khai triển nhị thức, modulo \(99^{2}\) ta có
\(100^{n} = \left(\right. 1 + 99 \left.\right)^{n} \equiv 1 + n \cdot 99 \left(\right. m o d 99^{2} \left.\right) .\)Vậy \(100^{n} \equiv 1 \left(\right. m o d 99^{2} \left.\right)\) khi và chỉ khi \(99 n \equiv 0 \left(\right. m o d 99^{2} \left.\right)\), tức \(n \equiv 0 \left(\right. m o d 99 \left.\right)\).
=> Những \(n\) thỏa là mọi bội của \(99\) (ít nhất \(n = 99\) là nhỏ nhất dương).
(b) \(A\) chia hết cho \(9999\).
Phân tích \(9999 = 3^{2} \cdot 11 \cdot 101 = 9 \cdot 11 \cdot 101\). Vì các thừa số này đôi một nguyên tố khác nhau, đủ để yêu cầu \(A \equiv 0\) theo từng modulo.
\(A\equiv k=0∑n-1(-1)k={0(mod101),1(mod101),nchẵn,nlẻ.}\)
Nên cần \(n\) chẵn.
Kết hợp: \(n\) phải chia hết cho \(9\), \(11\) và đồng thời là chẵn. Do đó \(n\) phải chia hết cho \(l c m \left(\right. 9 , 11 , 2 \left.\right) = 198\).
=> Những \(n\) thỏa là mọi bội của \(198\) (ít nhất \(n = 198\) là nhỏ nhất dương).
CẢM ƠN CÂU TRẢ LỜI CỦA THẦY PHÍ NAM PHONG Ạ