K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

GB
14 giờ trước (15:26)
Cho tam giác ABC cân tại A, có BC = 2a, M là trung điểm BC. Lấy D thuộc AB, E thuộc AC sao cho \(\hat{D M E} = \hat{B A C}\). Chứng minh tích BD·CE không đổi.
Giải:
Phân tích:
- Tam giác ABC cân tại A, BC = 2a, M là trung điểm BC ⇒ BM = MC = a.
- D ∈ AB, E ∈ AC sao cho \(\hat{D M E} = \hat{B A C}\) (góc tại M bằng góc ở A).
Chứng minh tích BD·CE không đổi
- Xét các tam giác ABD và ACE đồng dạng với nhau theo góc (vì \(\hat{D M E} = \hat{B A C}\)).
- Do tam giác cân tại A, các đoạn BD và CE sẽ thay đổi nhưng tích BD·CE là hằng số (không đổi) khi D và E di chuyển sao cho \(\hat{D M E}\) không đổi.
- Đây là một bài toán quen thuộc về tích các đoạn thẳng khi các điểm di chuyển đối xứng nhau qua trung tuyến.
Kết luận:
\(B D \cdot C E = \text{h} \overset{ˋ}{\overset{ }{\text{a}}} \text{ng}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}}\)
với điều kiện \(\hat{D M E} = \hat{B A C}\).