Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài toán:
Tam giác ABC vuông tại A, đường cao AH hạ từ A xuống BC. Biết:
- HB = 64 mm
- HC = 81 mm
Yêu cầu: Tính độ dài các cạnh góc vuông AB, AC và số đo góc B, C.
Phân tích:
Khi có đường cao AH từ đỉnh A vuông góc với BC, ta có các tam giác đồng dạng:
- ΔABH ~ ΔAHC ~ ΔABC
Bước 1: Tính BC
Đường cao AH chia BC thành 2 đoạn:
- HB = 64 mm
- HC = 81 mm
Nên:
\(B C = H B + H C = 64 + 81 = 145 \&\text{nbsp};\text{mm}\)
Bước 2: Tính AH
Áp dụng hệ thức về đường cao trong tam giác vuông:
\(A H^{2} = H B \times H C\)
Thay số:
\(A H^{2} = 64 \times 81 = 5184 \Rightarrow A H = \sqrt{5184} = 72 \&\text{nbsp};\text{mm}\)
Bước 3: Tính AB và AC
Ta biết:
- \(A B^{2} = B H \times B C\)
- \(A C^{2} = C H \times B C\)
Vậy:
\(A B^{2} = 64 \times 145 = 9280 \Rightarrow A B = \sqrt{9280} \approx 96.3 \&\text{nbsp};\text{mm}\) \(A C^{2} = 81 \times 145 = 11745 \Rightarrow A C = \sqrt{11745} \approx 108.4 \&\text{nbsp};\text{mm}\)
Bước 4: Tính góc B và góc C
Áp dụng định nghĩa lượng giác trong tam giác vuông:
\(tan B = \frac{A C}{A B} = \frac{108.4}{96.3} \approx 1.126\)
Tính góc B:
\(B = arctan \left(\right. 1.126 \left.\right) \approx 48.3^{\circ}\)
Vì tam giác vuông tại A nên:
\(C = 90^{\circ} - B = 41.7^{\circ}\)
Kết quả:
- \(A B \approx 96.3 \&\text{nbsp};\text{mm}\)
- \(A C \approx 108.4 \&\text{nbsp};\text{mm}\)
- \(\angle B \approx 48.3^{\circ}\)
- \(\angle C \approx 41.7^{\circ}\)
HB=64mm=6,4cm
HC=81mm=8,1cm
BC=BH+CH=6,4+8,1=14,5(cm)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\frac{BH}{BA}=\frac{BA}{BC}\)
=>\(BH\cdot BC=AB^2\)
=>\(BA^2=6,4\cdot14,5=92,8\)
=>\(BA=\sqrt{92,8}=\frac{4\sqrt{145}}{5}\) (cm)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(AC^2=145-\left(\frac{4\sqrt{145}}{5}\right)^2=\frac{261}{5}\)
=>\(AC=\sqrt{\frac{261}{5}}=\frac{3\sqrt{145}}{5}\) (cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{AC}=\frac{4\sqrt{145}}{5}:\sqrt{145}=\frac45\)
nên \(\hat{C}\) ≃53 độ
ΔABC vuông tại A
=>\(\hat{ABC}+\hat{C}=90^0\)
=>\(\hat{ABC}=90^0-53^0=37^0\)

Ta có: góc BAH + HAC = 900
góc ACH + HAC = 900
=> góc BAH = góc ACH
Xét tam giác AHB và tam giác CAB ta có:
góc AHB = góc CAB (=900)
góc BAH = góc BCA (chứng minh trên)
=> tam giác AHB đồng dạng với tam giác CAB (gg) (1)
\(\Rightarrow\frac{AH}{AC}=\frac{HB}{AB}\Rightarrow HB=\frac{AH.AB}{AC}=AH.\frac{AB}{AC}=30.\frac{5}{6}=25cm\)
\(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{30^2}{25}=36cm\)
Vậy BH = 25cm. CH = 36cm
ta có thể đơn giản xét tam giác BAH ~ tam giác ACH
=>AH/CH= BH/AH= AB/AC
=> 30/CH= BH/30= 5/6
=> CH= 30.6:5= 36
=> BH= 5.30:6= 25

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)