K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9

Bài toán:

Tam giác ABC vuông tại A, đường cao AH hạ từ A xuống BC. Biết:

  • HB = 64 mm
  • HC = 81 mm

Yêu cầu: Tính độ dài các cạnh góc vuông AB, AC và số đo góc B, C.


Phân tích:

Khi có đường cao AH từ đỉnh A vuông góc với BC, ta có các tam giác đồng dạng:

  • ΔABH ~ ΔAHC ~ ΔABC

Bước 1: Tính BC

Đường cao AH chia BC thành 2 đoạn:

  • HB = 64 mm
  • HC = 81 mm

Nên:

\(B C = H B + H C = 64 + 81 = 145 \&\text{nbsp};\text{mm}\)


Bước 2: Tính AH

Áp dụng hệ thức về đường cao trong tam giác vuông:

\(A H^{2} = H B \times H C\)

Thay số:

\(A H^{2} = 64 \times 81 = 5184 \Rightarrow A H = \sqrt{5184} = 72 \&\text{nbsp};\text{mm}\)


Bước 3: Tính AB và AC

Ta biết:

  • \(A B^{2} = B H \times B C\)
  • \(A C^{2} = C H \times B C\)

Vậy:

\(A B^{2} = 64 \times 145 = 9280 \Rightarrow A B = \sqrt{9280} \approx 96.3 \&\text{nbsp};\text{mm}\) \(A C^{2} = 81 \times 145 = 11745 \Rightarrow A C = \sqrt{11745} \approx 108.4 \&\text{nbsp};\text{mm}\)


Bước 4: Tính góc B và góc C

Áp dụng định nghĩa lượng giác trong tam giác vuông:

\(tan ⁡ B = \frac{A C}{A B} = \frac{108.4}{96.3} \approx 1.126\)

Tính góc B:

\(B = arctan ⁡ \left(\right. 1.126 \left.\right) \approx 48.3^{\circ}\)

Vì tam giác vuông tại A nên:

\(C = 90^{\circ} - B = 41.7^{\circ}\)


Kết quả:

  • \(A B \approx 96.3 \&\text{nbsp};\text{mm}\)
  • \(A C \approx 108.4 \&\text{nbsp};\text{mm}\)
  • \(\angle B \approx 48.3^{\circ}\)
  • \(\angle C \approx 41.7^{\circ}\)

HB=64mm=6,4cm

HC=81mm=8,1cm

BC=BH+CH=6,4+8,1=14,5(cm)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\hat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\frac{BH}{BA}=\frac{BA}{BC}\)

=>\(BH\cdot BC=AB^2\)

=>\(BA^2=6,4\cdot14,5=92,8\)

=>\(BA=\sqrt{92,8}=\frac{4\sqrt{145}}{5}\) (cm)

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(AC^2=145-\left(\frac{4\sqrt{145}}{5}\right)^2=\frac{261}{5}\)

=>\(AC=\sqrt{\frac{261}{5}}=\frac{3\sqrt{145}}{5}\) (cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{AC}=\frac{4\sqrt{145}}{5}:\sqrt{145}=\frac45\)

nên \(\hat{C}\) ≃53 độ

ΔABC vuông tại A

=>\(\hat{ABC}+\hat{C}=90^0\)

=>\(\hat{ABC}=90^0-53^0=37^0\)

29 tháng 7 2016

Ta có: góc BAH + HAC = 900

           góc ACH + HAC = 900

=> góc BAH = góc ACH

Xét tam giác AHB và tam giác CAB ta có:

    góc AHB = góc CAB (=900)

    góc BAH = góc BCA (chứng minh trên)

=> tam giác AHB đồng dạng với tam giác CAB (gg) (1)

\(\Rightarrow\frac{AH}{AC}=\frac{HB}{AB}\Rightarrow HB=\frac{AH.AB}{AC}=AH.\frac{AB}{AC}=30.\frac{5}{6}=25cm\)

\(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{30^2}{25}=36cm\) 

                                                     Vậy BH = 25cm. CH = 36cm

29 tháng 7 2016

ta có thể đơn giản xét tam giác BAH ~ tam giác ACH

=>AH/CH= BH/AH= AB/AC

=> 30/CH= BH/30= 5/6

=> CH= 30.6:5= 36

=> BH= 5.30:6= 25

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông