Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) D,E lần lượt là điểm chính giữa của cung nhỏ AB, AC
=> \(\hept{\begin{cases}\widebat{AO}=\widebat{BO}\\\widebat{AE}=\widebat{EC}\end{cases}}\)
ta có
\(\widehat{AHK}=\frac{1}{2}\left(\widebat{BO+\widebat{AE}}\right)\)
\(=\frac{1}{2}\left(\widebat{AO}+\widebat{EC}\right)=\widehat{AKH}\)
=> tam giác AHK cân tại A
b) \(\widebat{AD}=\widebat{DB}=>\widehat{AED}=\widehat{BED}\)
\(\widebat{AE=\widebat{EC=>\widehat{ADE}=\widehat{IDE}}}\)
DE cạnh chung
=>\(\Delta ADE=\Delta IDE\left(c-g-c\right)\)
=>\(\hept{\begin{cases}DA=DI\\EA=EI\end{cases}=>DE}\)là đường trung trực của AI
=>\(AI\perp DE\)
c)\(\widehat{EIC}=\frac{1}{2}\left(\widebat{BD}+\widebat{CE}\right)=\frac{1}{2}\left(\widebat{AD}+\widebat{EC}\right)=\widehat{EKC}\)
=> tứ giác EKIC nội tiếp
d) tứ giác EKIC nội tiếp
=>\(\widehat{IKC}=\widehat{BEC}=\widehat{BAC}\)
=>\(IK//AB\)

a) Xét (O) có
\(\widehat{BCD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
\(\widehat{ACD}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)
\(\stackrel\frown{BD}=\stackrel\frown{AD}\)(D là điểm nằm chính giữa của cung AB)
Do đó: \(\widehat{BCD}=\widehat{ACD}\)(Hệ quả góc nội tiếp)
mà tia CD nằm giữa hai tia CA và CB
nên CD là tia phân giác của \(\widehat{BCA}\)(đpcm)

a/ Ta có góc BDC=90 độ ( góc nt chăn nửa đường tròn)
suy ra góc ADH = 90 độ ( kề bù )
góc BEC= 90 độ ( góc nt chắn nửa đường tròn)
suy ra góc AEH = 90 độ ( kề bù )
Tư giác ADHE có góc ADH + góc AEH = 90 độ + 90 độ = 180 độ
Hại góc ở vị tri đối nhau . Do đó tứ giác ADHE nt đường tròn.
b/
c/Ta có góc BDC = 90 độ ( góc nt chắn nửa đt)
góc BEC = 90 độ ( góc nt chắn 1/2 đt)
Tứ giác BDEC có hai đỉnh kề D và E cùng nhìn BC dưới một góc vuông . Do đó tứ giác BDEC nt
suy ra góc BDE + góc BCE = 180 độ (1)
Mặt khác : góc ADE + góc BDE = 180 độ ( kề bù ) (2)
(1) (2) suy ra góc ADE = góc ACB
Xét tam giác ADE và tam giác ACB có
goc BAC chung
goc ADE = góc BAC (cmt)
suy ra tam giác ADE đồng dạng tam giác ACB (g.g)
nên AD/AC = AE/AB
hay AD.AB =AE.AC.

a. Vì \(CE\perp MA\)tại E (gt) => \(\widehat{AEC}=90^o\)
\(CD\perp AB\)tại D=> \(\widehat{ADC}=90^o\)
Xét tứ giác AECD có: \(\widehat{AEC}+\widehat{ADC}=90^o+90^o=180^o\)=> AECD là tứ giác nội tiếp đt \((G,R=\frac{AC}{2})\)trong đó G là trung điểm của AC (dhnb)
Cmtt ta có: BFCD là tứ giác nội tiếp đt \((H,R=\frac{BC}{2})\)trong đó H là trung điểm của BC
b.
Vì AECD là tứ giác nội tiếp (cmt) => \(\widehat{EAC}=\widehat{EDC}\)(2 góc nội tiếp cùng chắn \(\widebat{EC}\)) (1)
Do MA là tiếp tuyến của đt(O) (gt)=> \(\widehat{EAC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{ABC}=\widehat{DBC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc nội tiếp) => \(\widehat{EAC}=\widehat{DBC}\)(2)
vì BFCD là tứ giác nội tiếp => \(\widehat{DBC}=\widehat{DFC}\)(2 góc nội tiếp cùng chắn \(\widebat{DC}\)) (3)
Từ (1),(2) và (3) => \(\widehat{EDC}=\widehat{DFC}\)
do AECD là tứ giác nội tiếp (cmt) => \(\widehat{CED}=\widehat{CAD}\)(2 góc nội tiếp cùng chắn \(\widebat{CD}\)) (4)
Vì MB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{CBF}=\frac{1}{2}sđ\widebat{BC}\)(T/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{BAC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{BC}\)(t/c góc nội tiếp) => \(\widehat{CBF}=\widehat{DAC}\)(5)
lại có: BFCD là tứ giác nội tiếp (cmt) => \(\widehat{CBF}=\widehat{CDF}\)(2 góc nội tiếp cùng chắn \(\widebat{CF}\)) (6)
Từ (4), (5) và (6) => \(\widehat{CED}=\widehat{CDF}\)
Xét \(\Delta ECD\)và \(\Delta DCF\)có:
\(\widehat{CED}=\widehat{CDF}\)(Cmt)
\(\widehat{EDC}=\widehat{DFC}\)(Cmt)
=> \(\Delta ECD~\Delta DCF\)(g.g) => \(\frac{EC}{DC}=\frac{CD}{CF}\Rightarrow CD^2=CE\times CF\)(Đpcm)
c. Vì I là giao điểm của AC và DE (gt) => \(I\in AC\)
K là giao điểm của BC và DF (gt) => \(K\in BC\)
=> \(\widehat{ICK}=\widehat{ACB}\)
Vì \(\widehat{EDC}=\widehat{ABC}\left(cmt\right)\Rightarrow\widehat{IDC}=\widehat{ABC}\left(do\overline{E,I,D}\Rightarrow\widehat{EDC}=\widehat{IDC}\right)\)
\(\widehat{CDF}=\widehat{BAC}\left(cmt\right)\Rightarrow\widehat{CDK}=\widehat{BAC}\left(do\overline{F,K,D}\Rightarrow\widehat{CDF}=\widehat{CDK}\right)\)
Xét tứ giác ICKD có : \(\widehat{ICK}+\widehat{IDK}=\widehat{ICK}+\widehat{IDC}+\widehat{CDK}=\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\)
(Áp dụng định lý tổng 3 góc trong \(\Delta ABC\)ta có: \(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\))
=> Tứ giác ICKD là tứ giác nội tiếp (dhnb) => 4 điểm I,C,K,D cùng thuộc 1 đường tròn (đpcm)
d. Vì ICKD là tứ giác nội tiếp (cmt) => \(\widehat{CIK}=\widehat{CDK}\)(2 góc nội tiếp cùng chắn \(\widebat{CK}\))
Lại có: \(\widehat{CDK}=\widehat{BAC}\)(Cmt) => \(\widehat{CIK}=\widehat{BAC}\)mà 2 góc này ở vị tri đồng vị => IK // AB (Dhnb)
Do \(CD\perp AB\left(gt\right)\)=> \(IK\perp CD\)(Quan hệ tính vuông góc và tính song song của 3 đt)