K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Lăng kính có dạnh hình lăng trụ đứng với đáy là tam giác.

Đèn kéo quân

Hộp sữa có dạng hình lăng trụ đứng tứ giác, cũng là hình hộp chữ nhật.

Viên gạch có dạng hình lăng trụ đứng với đáy là hình lục giác đều

a: \(11^{x-1}=11^7\)

=>x-1=7

=>x=7+1=8

b: \(\left(x-4\right)^2=64\)

=>\(\left[\begin{array}{l}x-4=8\\ x-4=-8\end{array}\right.\Rightarrow\left[\begin{array}{l}x=8+4=12\\ x=-8+4=-4\end{array}\right.\)

c: \(5^{x+1}-5^{x}=100\cdot25^{29}\)

=>\(5^{x}\cdot5-5^{x}=4\cdot5^2\cdot5^{29}=4\cdot5^{31}\)

=>\(5^{x}\cdot4=4\cdot5^{31}\)

=>x=31

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Những hình khối như trên được gọi là hình lăng trụ.

19 tháng 9 2023

\(HHCN:a,\\ HLP:b,c\)

23 tháng 9 2023

tham khảo

Hình a có dạng kiến trúc hình hộp chữ nhật.

Hình b có dạng kiến trúc hình lập phương.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Dãy đã cho là dãy số liệu.

=> Em ủng hộ bạn Tròn.

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

+ Biểu đồ biểu diễn nhiệt độ trung bình các tháng năm 2020 tại Thành phố Hồ Chí Minh.

+ Đơn vị thời gian là tháng, đơn vị số liệu là độ C.

+ Tháng 4 có nhiệt độ trung bình cao nhất.

+ Tháng 12 có nhiệt độ trung bình thấp nhất.

+ Nhiệt độ trung bình tăng trong những khoảng thời gian từ tháng: 1 – 2; 2 – 3; 3 – 4.

+ Nhiệt độ trung bình giảm trong những khoảng thời gian từ tháng: 4 – 5; 5 – 6; 6 – 7; 8 – 9; 10 – 11; 11 – 12.

+ Nhiệt độ trung bình không đổi trong những khoảng thời gian từ tháng: 7 – 8; 9 – 10.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

17 tháng 9

Giải:

Góc xMN = góc MNt = 70\(^0\) (hai góc so le trong)

Suy ra: xy // zt

Góc xMN = Góc mMy = 70\(^0\) (đối đỉnh)

Góc MNt = góc zNn = 70\(^0\) hai góc đối đỉnh

\(\hat{xMN}\) + \(\hat{xMm}\) = 180\(^0\) (hai góc kề bù)

\(\hat{xMm}\) = 180\(^0-70^0=110^0\)

\(\hat{xMm}=\hat{NMy}\) = 110\(^0\) (đối đỉnh)

Góc NMy = góc MNz = 110\(^0\) (so le trong)

Góc MNz = Góc nNt = 110\(^0\) (đối đỉnh)



Ta có: \(\hat{xMN}=\hat{tNM}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên xy//zt

=>\(\hat{yMN}=\hat{zNM}\) (hai góc so le trong)

Ta có: xy//zt

=>\(\hat{xMN}+\hat{zNM}=180^0\) (hai góc trong cùng phía)

=>\(\hat{zNM}=180^0-70^0=110^0\)

Ta có: \(\hat{zNM}=\hat{yMN}\) (cmt)

\(\hat{zNM}=110^0\)

nên \(\hat{yMN}=110^0\)

Các cặp góc đồng vị là: \(\hat{yMm};\hat{tNM}\) ; \(\hat{xMm};\hat{zNM}\) ; \(\hat{xMN};\hat{zNn}\) ; \(\hat{yMN};\hat{tNn}\)

Ta có: \(\hat{xMN}=\hat{mMy}\) (hai góc đối đỉnh)

\(\hat{xMN}=70^0\)

nên \(\hat{mMy}=70^0\)

Ta có: \(\hat{yMN}=\hat{xMm}\) (hai góc đối đỉnh)

\(\hat{yMN}=110^0\)

nên \(\hat{xMm}=110^0\)

Ta có: \(\hat{MNt}=\hat{zNn}\) (hai góc đối đỉnh)

\(\hat{MNt}=70^0\)

nên \(\hat{zNn}=70^0\)

Ta có: \(\hat{zNM}=\hat{tNn}\) (hai góc đối đỉnh)

\(\hat{zNM}=110^0\)

nên \(\hat{tNn}=110^0\)