
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b, ĐKXĐ: \(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}=3\)
\(\Leftrightarrow x=7\left(tm\right)\)
a, ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)
\(\Leftrightarrow2\sqrt{x-5}+6=0\)
\(\Leftrightarrow\sqrt{x-5}=-3\)
Phương trình vô nghiệm

Ta thấy: 16<18
\(\sqrt{65}\)< \(\sqrt{257}\) vì 65<257
=> 16+ \(\sqrt{65}\)< \(\sqrt{257}\)+18

\(\sqrt{37^2-35^2}=\sqrt{144}=12\)
\(\sqrt{221^2-220}=\sqrt{48621}\approx220,50\)
\(\sqrt{65^2-63^2}=\sqrt{256}=16\)
\(\sqrt{117^2-108^2}=\sqrt{2025}=45\)

a) Đặt \(\sqrt[3]{65+x}=a;\sqrt[3]{65-x}=b\)
Nhận xét x = 65 không phải là nghiệm. Xét x khác 65 thì \(b\ne0\)
PT \(\Leftrightarrow a^2+b^2-5ab=0\)
\(\Leftrightarrow\left(\frac{a}{b}\right)^2-5\left(\frac{a}{b}\right)+1=0\Leftrightarrow t^2-5t+1=0\left(\text{đặt }t=\frac{a}{b}\right)\)
Hình như chị ghi đề sai, số quá xấu:((
a/ Nghiệm xấu quá
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\) ta được:
\(a^2+b^2=5ab\Leftrightarrow a^2-5ab+b^2=0\)
\(\Leftrightarrow\left(a-\frac{5+\sqrt{21}}{2}b\right)\left(a-\frac{5-\sqrt{21}}{2}b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\frac{5+\sqrt{21}}{2}b\\a=\frac{5-\sqrt{21}}{2}b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{65+x}=\frac{5+\sqrt{21}}{2}\sqrt[3]{65-x}\\\sqrt[3]{65+x}=\frac{5-\sqrt{21}}{2}\sqrt[3]{65-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}65+x=\left(\frac{5+\sqrt{21}}{2}\right)^3\left(65-x\right)\\65+x=\left(\frac{5-\sqrt{21}}{2}\right)^3\left(65-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(56+12\sqrt{21}\right)x=65\left(54+12\sqrt{21}\right)\\\left(56-12\sqrt{21}\right)x=65\left(54-12\sqrt{21}\right)\end{matrix}\right.\) \(\Rightarrow x=...\)
b/ \(\Leftrightarrow\sqrt[3]{x-5}+\sqrt[3]{2x-1}=\sqrt[3]{3x+2}-2\)
\(\Leftrightarrow3x-6+3\sqrt[3]{\left(x-5\right)\left(2x-1\right)}\left(\sqrt[3]{3x+2}-2\right)=3x-6-6\sqrt[3]{3x+2}\left(\sqrt[3]{3x+2}-2\right)\)
\(\Leftrightarrow\sqrt[3]{\left(x-5\right)\left(2x-1\right)}\left(\sqrt[3]{3x+2}-2\right)=-2\sqrt[3]{3x+2}\left(\sqrt[3]{3x+2}-2\right)\)
\(\Leftrightarrow\left(\sqrt[3]{3x+2}-2\right)\left(\sqrt[3]{\left(x-5\right)\left(2x-1\right)}+2\sqrt[3]{3x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=8\Rightarrow x=2\\\left(x-5\right)\left(2x-1\right)=-8\left(3x+2\right)\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-13x+21=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{7}{2}\end{matrix}\right.\)

1,=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3}-\sqrt{\sqrt{12}+4}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
=\(\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
=\(\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
=\(\sqrt{4+2\sqrt{3}}\)
=\(\sqrt{3}+1\)

1a)\(\sqrt{3-2\sqrt{2}}=\sqrt{2-2.\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
b)\(\sqrt{28+10\sqrt{3}}=\sqrt{25+2.5.\sqrt{3}+3}=\sqrt{\left(5+\sqrt{3}\right)^2}=\left|5+\sqrt{3}\right|=5+\sqrt{3}\)
c)\(\sqrt{14+6\sqrt{5}}=\sqrt{9+2.3.\sqrt{5}+5}=\sqrt{\left(3+\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|=3+\sqrt{5}\)
d)\(\sqrt{13-4\sqrt{3}}=\sqrt{13-2.\sqrt{12}}=\sqrt{12-2.\sqrt{12}.1+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)
2)a)\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2.\sqrt{7}.1+1}-\sqrt{7+2.\sqrt{7}.1+1}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|=\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)
b)\(\sqrt{18+8\sqrt{2}}-\sqrt{18-8\sqrt{2}}\)
\(=\sqrt{16+2.4.\sqrt{2}+2}-\sqrt{16-2.4.\sqrt{2}+2}\)
\(=\sqrt{\left(4+\sqrt{2}\right)^2}-\sqrt{\left(4-\sqrt{2}\right)^2}\)
\(=\left|4+\sqrt{2}\right|-\left|4-\sqrt{2}\right|=4+\sqrt{2}-\left(4-\sqrt{2}\right)=2\sqrt{2}\)
\(a,\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)\(\)
b, \(\sqrt{28+10\sqrt{3}}=\sqrt{28+2\cdot5\cdot\sqrt{3}}\)
\(=\sqrt{5^2-2\cdot5\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(5-\sqrt{3}\right)^2}=\left|5-\sqrt{3}\right|=5-\sqrt{3}\)

\(P=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=1\)
b/ \(x=\sqrt[3]{1+\sqrt{65}}+\sqrt[3]{1-\sqrt{65}}\)
\(\Rightarrow x^3=2+3\sqrt[3]{1-65}.x\)
\(\Rightarrow x^3=2-12x\)
\(\Rightarrow x^3+12x=2\)
\(\Rightarrow Q=2+2009=2011\)

\(A=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)=2\)
\(B=\sqrt{18+8\sqrt{2}}+\sqrt{18-8\sqrt{2}}=\sqrt{\left(\sqrt{2}+4\right)^2}+\sqrt{\left(4-\sqrt{2}\right)^2}=4+\sqrt{2}+4-\sqrt{2}=8\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+\frac{2\sqrt{2}}{\sqrt{2}}.\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2.\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\approx1,369483298\)