Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bước 1: Xét các trường hợp nhỏ
Phương trình:
\(2^{x} - 3^{y} = 1 \Rightarrow 2^{x} = 3^{y} + 1\)
Cả hai số \(2^{x}\) và \(3^{y} + 1\) đều là số nguyên dương, vậy \(x \geq 1\), \(y \geq 0\).
Bước 2: Thử với các số nguyên nhỏ
- y = 0:
\(2^{x} = 3^{0} + 1 = 1 + 1 = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 1\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right)\)
- y = 1:
\(2^{x} = 3^{1} + 1 = 4 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 2\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)\)
- y = 2:
\(2^{x} = 3^{2} + 1 = 9 + 1 = 10 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 10 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
- y = 3:
\(2^{x} = 3^{3} + 1 = 27 + 1 = 28 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 28 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
- y = 4:
\(2^{x} = 3^{4} + 1 = 81 + 1 = 82 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 82 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
Bước 3: Kiểm tra tính khả thi tổng quát
- Khi \(y \geq 3\), \(3^{y} \equiv 0 \left(\right. m o d 9 \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3^{y} + 1 \equiv 1 \left(\right. m o d 9 \left.\right)\)
- Các lũy thừa của 2: \(2^{x} m o d \textrm{ } \textrm{ } 9\) lặp theo chu kỳ: 2, 4, 8, 7, 5, 1,…
- Xét \(2^{x} \equiv 1 \left(\right. m o d 3 \left.\right)\) hay \(2^{x} - 1 = 3^{y}\), theo định lý Catalan, nghiệm duy nhất cho phương trình lũy thừa cách nhau 1 là \(\left(\right. x , y \left.\right) = \left(\right. 3 , 2 \left.\right)\) cho phương trình \(3^{2} - 2^{3} = 1\), nhưng ở đây thứ tự khác nên chỉ có các nghiệm nhỏ đã tìm.
Do đó, không có nghiệm lớn hơn.
✅ Kết luận
Các nghiệm nguyên của phương trình \(2^{x} - 3^{y} = 1\) là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right) \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)}\)

1) \(A=x\left(2x-3\right)=2x^2-3x\)
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1,5}{\sqrt{2}}+\frac{2,25}{2}-1,125\)
\(=\left(\sqrt{2}x-\frac{1,5}{\sqrt{2}}\right)^2-1,125\ge-1,125\)
Vậy \(A_{min}=-1,125\Leftrightarrow\sqrt{2}x-\frac{1,5}{\sqrt{2}}=0\)
\(\Leftrightarrow x=\frac{3}{4}\)
2) \(21^{10}-1=\left(21^5+1\right)\left(21^5-1\right)\)
Dễ thấy 215 - 1 có tận cùng 00
\(\Rightarrow21^5-1⋮100\)
Ta có 215 có tận cùng bằng 1 nên 215 + 1 chia hết cho 2
\(\Rightarrow\left(21^5+1\right)\left(21^5-1\right)⋮200\)
hay \(21^{10}-1⋮200\)

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)
Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)
Vậy C = 1
Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1
Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)
\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)

Ta có A = 2x2 + 12x + 1
= \(2\left(x^2+6x+\frac{1}{2}\right)=2\left(x^2+6x+9-\frac{17}{2}\right)=2\left(x+3\right)^2-17\ge-17\)
=> Min A = -17
Dấu "=" xảy ra <=> x + 3 = 0
<=> x = -3
Vậy Min A = -17 <=> x = -3
b) Ta có B = x2 + 3x + 2
= \(x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{1}{4}=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
=> Min B = -1/4
Dấu "=" xảy ra <=> x + 3/2 = 0 <=> x = -3/2
Vậy Min B = -1/4 <=> x = -3/2
có pk đề như này ko:x4+x3+2x2+x+1=0(vô nghiệm)
Dễ thấy x=0 không phải là nghiệm của phương trình.
Khi đó phương trình tương đương:
\(x^2+x+2+\dfrac{1}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)+\left(x+\dfrac{1}{x}\right)=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+\left(x+\dfrac{1}{x}\right)=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{x}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=0\\x+\dfrac{1}{x}+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Rightarrow\) Phương trình vô nghiệm.