K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 giờ trước (16:15)

Olm chào em, ý kiến của em là rất đúng. Không nên trả lời nếu mình không biết kể cả là câu đó chưa có ai làm được. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và có những giây phút giao lưu thú vị cùng Olm, em nhé.

4 tháng 9

Ta có phương trình dao động điều hòa của vật:

\(x = 8 cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right)\)

Trong đó:

  • \(x\) là vị trí của vật (đơn vị cm),
  • \(t\) là thời gian (đơn vị s),
  • \(8\) là biên độ dao động (đơn vị cm),
  • \(5 \pi\) là tần số góc (rad/s),
  • \(\frac{\pi}{3}\) là pha ban đầu.

Chúng ta sẽ lần lượt giải quyết từng câu hỏi.

a. Xác định trạng thái đầu

Trạng thái đầu của vật là trạng thái tại thời điểm \(t = 0\).

Thay \(t = 0\) vào phương trình dao động:

\(x \left(\right. 0 \left.\right) = 8 cos ⁡ \left(\right. 5 \pi \times 0 + \frac{\pi}{3} \left.\right) = 8 cos ⁡ \left(\right. \frac{\pi}{3} \left.\right)\)

Biết rằng \(cos ⁡ \left(\right. \frac{\pi}{3} \left.\right) = \frac{1}{2}\), ta có:

\(x \left(\right. 0 \left.\right) = 8 \times \frac{1}{2} = 4 \textrm{ } \text{cm}\)

Vậy, trạng thái đầu của vật là \(x = 4 \textrm{ } \text{cm}\).

b. Xác định thời điểm lần đầu vật đạt vị trí biên dương

Vị trí biên dương là giá trị cực đại của \(x\), tức là khi \(x = 8 \textrm{ } \text{cm}\) (biên độ dao động).

Ta cần tìm thời điểm \(t\) sao cho:

\(8 cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 8\)

Chia hai vế cho 8:

\(cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 1\)

Giải phương trình:

\(5 \pi t + \frac{\pi}{3} = 2 k \pi \text{v}ớ\text{i} \textrm{ } k \in \mathbb{Z}\)

Giải phương trình trên:

\(5 \pi t = 2 k \pi - \frac{\pi}{3}\)

Chia cả hai vế cho \(5 \pi\):

\(t = \frac{2 k \pi - \frac{\pi}{3}}{5 \pi} = \frac{2 k - \frac{1}{3}}{5}\)

Khi \(k = 0\), ta có:

\(t = \frac{- \frac{1}{3}}{5} = - \frac{1}{15} \textrm{ } \text{s}\)

Vì thời gian phải dương, ta chọn \(k = 1\):

\(t = \frac{2 - \frac{1}{3}}{5} = \frac{\frac{5}{3}}{5} = \frac{1}{3} \textrm{ } \text{s}\)

Vậy, thời điểm lần đầu vật đạt vị trí biên dương là \(t = \frac{1}{3} \textrm{ } \text{s}\).

c. Xác định thời điểm lần đầu vật qua vị trí cân bằng

Vị trí cân bằng là \(x = 0\), tức là khi \(cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 0\).

Ta giải phương trình:

\(cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 0\)

Điều này xảy ra khi:

\(5 \pi t + \frac{\pi}{3} = \frac{\pi}{2} + k \pi \text{v}ớ\text{i} \textrm{ } k \in \mathbb{Z}\)

Giải phương trình:

\(5 \pi t = \frac{\pi}{2} + k \pi - \frac{\pi}{3}\)

Tính toán:

\(5 \pi t = \frac{\pi}{6} + k \pi\)

Chia cả hai vế cho \(5 \pi\):

\(t = \frac{\frac{\pi}{6} + k \pi}{5 \pi} = \frac{1}{30} + \frac{k}{5}\)

Khi \(k = 0\), ta có:

\(t = \frac{1}{30} \textrm{ } \text{s}\)

Vậy, thời điểm lần đầu vật qua vị trí cân bằng là \(t = \frac{1}{30} \textrm{ } \text{s}\).

d. Xác định thời điểm lần thứ 5 vật qua vị trí \(x = - 4 \textrm{ } \text{cm}\), với \(v > 0\)

Vị trí \(x = - 4 \textrm{ } \text{cm}\) ứng với phương trình:

\(- 4 = 8 cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right)\)

Chia hai vế cho 8:

\(- \frac{1}{2} = cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right)\)

Giải phương trình:

\(5 \pi t + \frac{\pi}{3} = \pi - \frac{\pi}{3} + 2 k \pi \text{v}ớ\text{i} \textrm{ } k \in \mathbb{Z}\)

Tính toán:

\(5 \pi t + \frac{\pi}{3} = \frac{2 \pi}{3} + 2 k \pi\)\(5 \pi t = \frac{2 \pi}{3} + 2 k \pi - \frac{\pi}{3} = \frac{\pi}{3} + 2 k \pi\)

Chia cả hai vế cho \(5 \pi\):

\(t = \frac{\frac{\pi}{3} + 2 k \pi}{5 \pi} = \frac{1}{15} + \frac{2 k}{5}\)

Vậy:

\(t_{1} = \frac{1}{15} \textrm{ } \text{s} \left(\right. k = 0 \left.\right)\)\(t_{2} = \frac{7}{15} \textrm{ } \text{s} \left(\right. k = 1 \left.\right)\)\(t_{3} = \frac{13}{15} \textrm{ } \text{s} \left(\right. k = 2 \left.\right)\)\(t_{4} = \frac{19}{15} \textrm{ } \text{s} \left(\right. k = 3 \left.\right)\)\(t_{5} = \frac{25}{15} = \frac{5}{3} \textrm{ } \text{s} \left(\right. k = 4 \left.\right)\)

Vậy, thời điểm lần thứ 5 vật qua vị trí \(x = - 4 \textrm{ } \text{cm}\) với \(v > 0\) là \(t = \frac{5}{3} \textrm{ } \text{s}\).


Tóm tắt:

  • a. Trạng thái đầu: \(x = 4 \textrm{ } \text{cm}\)
  • b. Thời điểm lần đầu vật đạt vị trí biên dương: \(t = \frac{1}{3} \textrm{ } \text{s}\)
  • c. Thời điểm lần đầu vật qua vị trí cân bằng: \(t = \frac{1}{30} \textrm{ } \text{s}\)
  • d. Thời điểm lần thứ 5 vật qua vị trí \(x = - 4 \textrm{ } \text{cm}\) với \(v > 0\)\(t = \frac{5}{3} \textrm{ } \text{s}\)
4 tháng 9

Tham khảo

16 tháng 12 2021

ở bản đồ nhé bn

/HT\

16 tháng 12 2021

bản đồ nhé

15 tháng 3 2018

Phát biểu nào là chính xác

Hạt tải điện trong kim loại là

A. các êlectron của nguyên tử

B. êlectron trong cùng của nguyên tử

C. các êlectron hoá trị đã bay tự do ra khỏi tinh thể

D. các êlêctron hoá trị chuyển động tự do trong mạng tinh thể

25 tháng 11 2020

D

7 tháng 7 2016

Bài này có hình vẽ không bạn?

7 tháng 7 2016

à chỉ có thế thui bạn à hh