K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=1+2+22+23+...+220

2S=2+22+23+24+...+221  

=>S=2S-S=221-1C

Vậy S=221-1

21 tháng 1 2019

\(S=1+2+2^2+2^3+...+2^{20}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{21}\)

\(\Rightarrow2S-S=\left(2+2^2+...+2^{21}\right)-\left(1+2+...+2^{20}\right)\)

\(\Rightarrow S=2^{21}-1\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

6 giờ trước (20:21)

bn ơi chia hết cho 21 và 15 hay là chia hết cho số 21,15 vậy?

6 giờ trước (20:22)

Chứng minh A chia hết cho \(21\) \(A\) được viết dưới dạng tổng: \(A=2^{1}+2^{2}+2^{3}+\dots +2^{60}\). Để chứng minh \(A\) chia hết cho \(21\), cần chứng minh \(A\) chia hết cho \(3\) và \(7\). Chứng minh A chia hết cho \(3\) \(A\) được nhóm thành các bộ \(2\) số hạng: \(A=(2^{1}+2^{2})+(2^{3}+2^{4})+\dots +(2^{59}+2^{60})\). \(A=2(1+2)+2^{3}(1+2)+\dots +2^{59}(1+2)\). \(A=2\cdot 3+2^{3}\cdot 3+\dots +2^{59}\cdot 3\). \(A=3(2+2^{3}+\dots +2^{59})\). Vì \(A\) có thừa số \(3\), nên \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(7\) \(A\) được nhóm thành các bộ \(3\) số hạng: \(A=(2^{1}+2^{2}+2^{3})+(2^{4}+2^{5}+2^{6})+\dots +(2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2})+2^{4}(1+2+2^{2})+\dots +2^{58}(1+2+2^{2})\). \(A=2\cdot 7+2^{4}\cdot 7+\dots +2^{58}\cdot 7\). \(A=7(2+2^{4}+\dots +2^{58})\). Vì \(A\) có thừa số \(7\), nên \(A\) chia hết cho \(7\). Vì \(A\) chia hết cho \(3\) và \(A\) chia hết cho \(7\), và \(3\) và \(7\) là hai số nguyên tố cùng nhau, nên \(A\) chia hết cho \(3\cdot 7=21\). Chứng minh A chia hết cho \(15\) Để chứng minh \(A\) chia hết cho \(15\), cần chứng minh \(A\) chia hết cho \(3\) và \(5\). Chứng minh A chia hết cho \(3\) Phần này đã được chứng minh ở trên. \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(5\) \(A\) được nhóm thành các bộ \(4\) số hạng: \(A=(2^{1}+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8})+\dots +(2^{57}+2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2}+2^{3})+2^{5}(1+2+2^{2}+2^{3})+\dots +2^{57}(1+2+2^{2}+2^{3})\). \(A=2(1+2+4+8)+2^{5}(1+2+4+8)+\dots +2^{57}(1+2+4+8)\). \(A=2\cdot 15+2^{5}\cdot 15+\dots +2^{57}\cdot 15\). \(A=15(2+2^{5}+\dots +2^{57})\). Vì \(A\) có thừa số \(15\), nên \(A\) chia hết cho \(15\). Kết luận \(A\) chia hết cho \(21\) và \(A\) chia hết cho \(15\).

\(S=1+2+2^2+2^3+...+2^{100}\)

\(2S=2+2^2+2^3+2^4+...+2^{101}\)

\(2S-S=\left(2+2^3+..+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)

\(S=2^{201}-1\)

10 tháng 11 2020

Ta có 

S = 1 + 2 + 22 + 23 + ....+ 2100

2S = 2 + 22 + 23 + 24 + . ....+ 2101

2S-S = ( 2 + 22 + 23 + 24 + . ....+ 2101) - ( 1 + 2 + 22 + 23 + ....+ 2100)

S = 2 + 22 + 23 + 24 + . ....+ 2101  - 1 -2 - 22  - 23 -....-  2100

S = 2101 - 1 

5 tháng 10 2019

a) \(\left(3^4.57-9^2.21\right):3^5\)

\(=\left(3^4.57-3^4.21\right):3^5\)

\(=\left[3^4\left(57-21\right)\right]:3^5\)

\(=3^4.36:3^5\)

\(=3^4.2^2.3^2:3^5\)

\(=3.4\)

\(=12\)

b) Ta có; \(1^3+2^3+...+9^3=2025\)

\(\Leftrightarrow2^3.\left(1^3+2^3+....+9^3\right)=2^3.2025\)

\(\Leftrightarrow2^3+4^5+...+18^3=16200\)

30 tháng 9 2017

ta có 1/2mũ 2 +1/3 mũ 2+1/4 mũ 2+...+1/100 mũ 2=1/2.2+1/3.3+1/4.4+...+1/100.100<1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101=1/2.3-1/100.101=1/6-1/10100=tự tính nhé

24 tháng 3 2022

Chỗ ... là gì bạn

5 tháng 8 2018

http://123link.pw/j6KCoe

15 tháng 10 2023

   599 - 42 x 597 - 32 x 59

= 597.(52 - 42) - 32.59

= 597.(25 - 16) - 32.59

= 597.9 - 9.59

22 tháng 12 2023

\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)

Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)

\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1

hay số dư của phép chia \(A\) cho \(3\) là \(1\).

22 tháng 12 2023

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1