Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm
a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)
= \(1-\frac{9}{9^{100}+1}\)
\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)
= \(1-\frac{10}{10^{99}-1}\)
Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)
nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)
\(\Rightarrow A< B\)
Bài làm
b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)
= \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)
\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)
= \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)
Vì \(1+5^9.3< 1+6^9.4\)
nên A < B

a: x+2x+3x+...+2011x=2012*2013
=>\(x\left(1+2+\cdots+2011\right)=2012\cdot2013\)
=>\(x\cdot2011\cdot\frac{2012}{2}=2012\cdot2013\)
=>\(x=\frac{2012\cdot2013}{2011\cdot1006}=\frac{2\cdot2013}{2011}=\frac{4026}{2011}\)
b: Đặt A=1+3+5+...+99
Số số hạng trong dãy số là:
\(\frac{99-1}{2}+1=\frac{98}{2}+1=49+1=50\) (số)
Tổng của dãy số là:
\(A=\left(99+1\right)\cdot\frac{50}{2}=50\cdot50=2500\)
Ta có: \(1+3+5+\cdots+99=\left(x+1\right)^2\)
=>\(\left(x+1\right)^2=2500\)
=>\(\left[\begin{array}{l}x+1=50\\ x+1=-50\end{array}\right.\Rightarrow\left[\begin{array}{l}x=49\\ x=-51\end{array}\right.\)
c:
Đặt B=1+3+5+...+199
Số số hạng của dãy là:
\(\frac{199-1}{2}+1=\frac{198}{2}+1=99+1=100\) (số)
Tổng của dãy số là:
\(B=\left(199+1\right)\cdot\frac{100}{2}=100^2\)
(x+1)+(2x+3)+(3x+5)+...+(100x+199)=30200
=>(x+2x+3x+...+100x)+(1+3+5+...+199)=30200
=>\(x\left(1+2+\cdots+100\right)+\left(1+3+\cdots+199\right)=30200\)
=>\(x\cdot100\cdot\frac{101}{2}+10000=30200\)
=>\(x\cdot5050=20200\)
=>x=4

\(\frac{-5^3\cdot40\cdot4^3}{135\cdot\left(-2\right)^{14}\left(-100\right)^0}=\frac{-125\cdot2^3\cdot5\cdot\left(2^2\right)^3}{5\cdot27\cdot2^{14}\cdot1}=\frac{-125\cdot2^6}{27\cdot2^{11}}=\frac{-125}{27\cdot2^5}=\frac{-125}{864}\)
\(\frac{\left(-5\right)^3.40.4^3}{135.\left(-2\right)^{14}.\left(-100\right)^0}\)\(=\frac{\left(-5\right)^3.5.2^3.2^6}{3^3.5.2^{14}.1}\)\(=\frac{-125}{864}\)
2B=52+...+5101
2B-B=B=(52+...+5101)-(5+...+5100)
= 5101-5
A mình k nhầm cho we are one Nguyễn Ngọc Sáng
PHẢI LÀ 5B CHỨ SAI MẤT RÙI