Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~

Ta có \(B=\left|2x-5\right|+\left|3+\left(-7\right)\right|\)
=> \(B=\left|2x-5\right|+\left|-4\right|\)
=> \(B=\left|2x-5\right|+4\)
Mà \(\left|2x-5\right|\ge0\)với mọi giá trị của x
=> \(\left|2x-5\right|+4\ge0+4=4\)với mọi giá trị của x
=> GTNN của B là 4.
Ta có:
\(B=|2x-5|+|3+\left(-7\right)|\)
\(=|2x-5|+4\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-5=0\Rightarrow x=\frac{5}{2}\).
Vậy Min B = 4 khi x = \(\frac{5}{2}\).

Bài 2:
3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = 0 - 10
<=> x = -10
=> x = -10
Bài 3:
6(3q + 4q) - 8(5p - q) + (p - q)
= 6.3p + 6.4q - 8.5p - (-8).q + p - q
= 18p + 24q - 40p + 8q + p - q
= (18p - 40p + p) + (24q + 8q - q)
= -21p + 31q
your gay
TH1: \(x\ge\frac72\)
=>B=2(4x-3)+2x-7=8x-6+2x-7=10x-13
Vì hàm số B=10x-13 là hàm số đồng biến trên R
nên B nhỏ nhất khi x nhỏ nhất
Khi \(x\ge\frac72\) thì \(x_{\min}=\frac72\)
=>\(B_{\min}=10\cdot\frac72-13=35-13=22\) (1)
TH2: \(0\le x\le\frac72\)
=>B=2(4x-3)+7-2x=8x-6+7-2x=6x+1
Vì hàm số B=6x+1 là hàm số đồng biến trên R
nên B nhỏ nhất khi x nhỏ nhất
Khi \(0\le x\le\frac72\) thì \(x_{\min}=0\)
=>\(B_{\min}=6\cdot0+1=1\) (2)
Từ (1),(2) suy ra \(B_{\min}=1\) khi x=0