Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Olm chào em, dưới đây là chú giải cho câu hỏi của em
Nếu p = 3k + 2 ta có:
2p\(^2\) + 1
= 2(3k + 2)\(^2\) + 1
= 2.(9k\(^2\) + 12k + 4) + 1
= 18k\(^2\) + 24k + 8 + 1
= 18k\(^2\) + 24k + (8 + 1)
= 18k\(^2\) + 24k + 9
= 3.(6k\(^2\) + 8k + 3) ⋮ 3

\(1-\dfrac{1}{n^2}=\dfrac{n^2-1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)
Do đó:
\(M=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{30^2}\right)\)
\(=\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}.\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}.\dfrac{\left(4-1\right)\left(4+1\right)}{4^2}...\dfrac{\left(30-1\right)\left(30+1\right)}{30^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{29.31}{30^2}=\dfrac{1.2.3...29}{2.3.4...30}.\dfrac{3.4.5...31}{2.3.4...30}\)
\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)

S = {5; 11; 17;...; 371}
Xét dãy số: 5; 11; 17;...; 371
Dãy số trên là dãy số cách đều với khoảng cách là:
11 - 5 = 6
Số số hạng của dãy số trên là:
(371 - 5) : 6 + 1 = 62 (số)
Vậy tập S có 62 phân tử

Giải:
A = {11; 14; ...; 140}
Xét dãy số: 11; 14;...; 140
Dãy số trên là dãy số cách đều với khoảng cách là:
14 - 11 = 3
Số số hạng của dãy số trên là:
(140 - 11) : 3 = 44(số)
Vậy tập hợp A có 44 phần tử.
Đáp số: 44 số

Sửa đề: Tính tỉ số của A và B
Ta có: \(A=92-\frac19-\frac{2}{10}-\cdots-\frac{92}{100}\)
\(=\left(1-\frac19\right)+\left(1-\frac{2}{10}\right)+\cdots+\left(1-\frac{92}{100}\right)\)
\(=\frac89+\frac{8}{10}+\cdots+\frac{8}{100}=8\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)\)
Ta có: \(B=\frac{1}{45}+\frac{1}{50}+\cdots+\frac{1}{500}\)
\(=\frac15\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)\)
Do đó: Tỉ số của A và B là:
\(\frac{A}{B}=\frac{8\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)}{\frac15\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)}=8\cdot5=40\)

\(A=1+2+2^2+2^3+\ldots+2^{500}\)
\(2A=2\times(1+2+2^2+2^3+\ldots+2^{500}\)
\(2A=2+2^2+2^3+2^4+\ldots+2^{501}\)
\(2A-A=(2+2^2+2^3+2^4+...+2^{501})-(1+2+2^2+2^3+\ldots+2^{500)}\)
\(A=2^{501}-1\)
đặt A= 1+2+2^2+2^3+...+2^500
=>2A=2+22+23+...+2501
=>2A-A=2+22+23+...+2500+2501-(1+2+22+23+...+2500)
=> A=2+22+23+...+2500+2501-1-2-22-23-...-2500
=2501-1
mik ko chắc là đúng đâu bn
\(M=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{900}\right)\)
\(=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{30^2}\right)\)
\(=\left(\dfrac{2^2-1}{2^2}\right)\left(\dfrac{3^2-1}{3^2}\right)\left(\dfrac{4^2-1}{4^2}\right)...\left(\dfrac{30^2-1}{30^2}\right)\)
\(=\left(\dfrac{1.3}{2^2}\right)\left(\dfrac{2.4}{3^2}\right)\left(\dfrac{3.5}{4^2}\right)...\left(\dfrac{29.31}{30^2}\right)\)
\(=\left(\dfrac{1.2.3...29}{2.3.4...30}\right).\left(\dfrac{3.4.5...31}{2.3.4...30}\right)=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
.