K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(F=\left(\frac{x+1}{x+4}+\frac{6x}{x^2-4x}-\frac{24}{x^2-16}\right):\frac{1}{x-4}\)

\(=\left(\frac{x+1}{x+4}+\frac{6x}{x\left(x-4\right)}-\frac{24}{\left(x-4\right)\left(x+4\right)}\right)\cdot\left(x-4\right)\)

\(=\left(\frac{x+1}{x+4}+\frac{6}{x-4}-\frac{24}{\left(x-4\right)\left(x+4\right)}\right)\cdot\left(x-4\right)\)

\(=\frac{\left(x+1\right)\left(x-4\right)+6\left(x+4\right)-24}{\left(x+4\right)\left(x-4\right)}\cdot\left(x-4\right)\)

\(=\frac{x^2-3x-4+6x+24-24}{\left(x+4\right)}=\frac{x^2+3x-4}{x+4}=\frac{\left(x+4\right)\left(x-1\right)}{x+4}=x-1\)

16 tháng 6 2018

\(=\frac{x^4-x^2-3x^2+3}{x^4-x^2+7x^2-7}=\frac{x^2\left(x^2-1\right)-3\left(x^2-1\right)}{x^2\left(x^2-1\right)+7\left(x^2-1\right)}=\frac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\frac{x^2-3}{x^2+7}\)

16 tháng 6 2018

HELP ME

30 tháng 6 2017

toàn hằng đẳng thức (1) và (2) thôi mà bạn, đọc SGK 8 tập 1 là hiểu ngay. Có gì khó hiểu hỏi nhé!

30 tháng 6 2017

a, x2-6x +9 = (x-3)2

b, 4x2+4x +1 = (2x)2+2.2x.1 +12=(2x+1)2

c, 9x2 -12x +4 = (3x-2)2

d, 25x2 -10x +1= (5x -1)2

e, x4-4x2+4 = (x2 -2)2

f, x2 +8x +16 = (x+4)2

29 tháng 9 2018

\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)

\(=x^3+2x^2-x-2-\left(x^3-4^3\right)\)

\(=x^3+2x^2-x-2-x^3+64\)

\(=2x^2-x+62\)

\(2x\left(3x-2\right)^2\)

\(=2x\left(9x^2-12x+4\right)\)

\(=18x^3-24x^2+8x\)

\(\left(x-3\right)\left(x^2-3x+9\right)\)

\(=x^3-3x^2+9x-3x^2+9x-27\)

\(=x^3-3x^2+18x-27\)

29 tháng 9 2018

\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)

\(=\left(x^2-1^2\right)\left(x+2\right)-x^3-4^3\)

\(=\left(x+1\right)\left(x-1\right)\left(x+2\right)-x^3-64\)

27 tháng 6 2016

\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)

\(=2x^3-\frac{3}{2}x^2+2\)

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

a)

\(\frac{x-2}{6x^2-6x}-\frac{1}{4x^2-4}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x^2-1)}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x-1)(x+1)}\)

\(=\frac{2(x+1)(x-2)}{12x(x-1)(x+1)}-\frac{3x}{12x(x-1)(x+1)}=\frac{2(x+1)(x-2)-3x}{12x(x-1)(x+1)}\)

\(=\frac{2x^2-5x-4}{12x(x-1)(x+1)}=\frac{2x^2-5x-4}{12x^3-12x}\)

b) ĐK: \(x\neq \pm 1\)

\(\frac{(x+1)(x^2-2x+1)}{6x^3+6}:\frac{x^2-1}{4x^2-4x+4}\)

\(=\frac{(x+1)(x-1)^2}{6(x^3+1)}.\frac{4x^2-4x+4}{x^2-1}\)

\(=\frac{4(x+1)(x-1)^2(x^2-x+1)}{6(x+1)(x^2-x+1)(x^2-1)}\)

\(=\frac{2(x-1)}{3(x+1)}\)

7 tháng 1 2019

Cảm ơn bn nhahaha