Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}\)
=>\(25A=5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(A+25A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}+5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(26A=5-\frac{1}{5^{99}}=\frac{5^{100}-1}{5^{99}}\)
=>\(A=\frac{5^{100}-1}{5^{99}\cdot26}\)

rối quá :)
B = (-5)0 + 51 + (-5)2 + 53 + ... + (-5)2016 + 52017
B = 1 + 51 + 52 + 53 + ... + 52016 + 52017
5B = 5 + 52 + 53 + ... + 52016 + 52017
5B - B = (5 + 52 + 53 + ... + 52016 + 52017) - (1 + 51 + 52 + 53 + ... + 52016 + 52017)
4B = 52017 - 1
B = \(\dfrac{5^{2017}-1}{4}\)

\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)

3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
Đặt \(A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}\)
=>\(25A=5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(A+25A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}+5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(26A=5-\frac{1}{5^{99}}=\frac{5^{100}-1}{5^{99}}\)
=>\(A=\frac{5^{100}-1}{5^{99}\cdot26}\)