Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{9}\)
b)\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}=-\frac{1}{13}\)
c)\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=2\)
d(\(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(35+9\right)}=\frac{1}{6}\)

\(a,\)\(\frac{2^5\times3^{12}\times7^8}{2^7\times3^{10}\times7^9}=\frac{3^2\times\left(2^5\times3^{10}\times7^8\right)}{2^2\times7\times\left(2^5\times3^{10}\times7^8\right)}\)\(=\frac{3^2}{2^2\times7}=\frac{9}{28}\)
\(b,\)Tương tự

a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
b) \(5^3\cdot2-100:4+2^3\cdot5\)
\(=125\cdot2-25+8\cdot5\)
\(=250-25+40\)
\(=225+40=265\)
c) \(6^2:9+50\cdot2+3^3-3\)
\(=36:9+100+27-3\)
\(=4+100+27-3\)
\(=104+27-3=131-3=128\)
d) \(3^2\cdot5+2^3\cdot10-81:3\)
\(=9\cdot5+8\cdot10-27\)
\(=45+80-27\)
\(=125-27=98\)
e) \(5^{13}:5^{10}-25\cdot2^2\)
\(=5^{13-10}-5^2\cdot2^2\)
\(=5^3-\left(5\cdot2\right)^2\)
\(=125-10^2\)
\(=125-100=25\)
f) \(20:2^2+5^9:5^8\)
\(=20:4+5^{9-8}\)
\(=5+5^1=5+5=10\)
g) \(100:5^2+7\cdot3^2\)
\(=10^2:5^2+7\cdot9\)
\(=\left(10:5\right)^2+63\)
\(=2^2+63=4+63=67\)
h) \(84:4+3^9:3^7+5^0\)
\(=21+3^{9-7}+1\)
\(=21+3^2+1\)
\(=21+9+1=30+1=31\)
i) \(29-\left[16+3\cdot\left(51-49\right)\right]\)
\(=29-\left[16+3\cdot2\right]\)
\(=29-\left[16+6\right]\)
\(=29-22=7\)
j) \(\left(15^{19}:5^{17}+3\right)\cdot0:7\)
\(=\left[\left(3\cdot5\right)^{19}:5^{17}+3\right]\cdot0\)
Vì số nào nhân cho 0 cũng bằng 0 nên giá trị biểu thức trên bằng 0
k) \(7^9:7^7-3^2+2^3\cdot5\)
\(=7^{9-7}-9+8\cdot5\)
\(=7^2-9+40\)
\(=49-9+40=40+40=80\)
l) \(1200:2+6^2\cdot2^1+18\)
\(=600+36\cdot2+18\)
\(=600+72+18\)
\(=600+\left(72+18\right)=600+90=690\)
m) \(5^9:5^7+70:14-20\)
\(=5^{9-7}+5-20\)
\(=5^2+5-20\)
\(25+5-20=30-20=10\)
Những câu sau mình làm sau nhé bạn!!!!!!!

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.

a,\(\dfrac{3^6.5^7.7^{11}}{3^4.5^7.7^{10}}=\dfrac{3^4.3^2.5^7.7^{10}.7}{3^4.5^7.7^{10}}\) \(=9.7=63\)
b,\(\dfrac{2^{43}+2^4}{2^{39}+1}=\dfrac{2^{39}.2^4+2^4}{2^{39}+1}\) \(=\dfrac{2^4\left(2^{39}+1\right)}{2^{39}+1}=16\)
1; 73.52.54.76:(55.78)
= (73.76).(52.54) : (55.78)
= 79.56: (55.78)
= (79:78).(56:55)
= 7.5
= 35
2; 33.a7.3.a2:(34.a6)
= (33.3).(a7.a2): (34.a6)
= 34.a9: (34.a6)
= (34:34).(a9:a6)
= a3