Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)
\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)
b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)
\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)
\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)

\(MTC:\left(x-3\right)^2\left(x^2+3x+9\right)\)
\(\frac{x}{x^3-27}=\frac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\frac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{2x}{x^2-6x+9}=\frac{2x}{\left(x-3\right)^2}=\frac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{1}{x^2+3x+9}=\frac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(MTC:2\left(x-1\right)\left(x+1\right)\)
\(\frac{x-1}{2x+2}=\frac{x-1}{2\left(x+1\right)}=\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{x+1}{2x-2}=\frac{x+1}{2\left(x-1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{1}{1-x^2}=-\frac{1}{\left(x-1\right)\left(x+1\right)}=-\frac{2}{2\left(x-1\right)\left(x+1\right)}\)
\(MTC:2\left(x+1\right)\left(x^2-x+1\right)\)
\(\frac{1}{x^3+1}=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{3}{2x+2}=\frac{3}{2\left(x+1\right)}=\frac{3\left(x^2-x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x^2-x+1}=\frac{4\left(x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)

b)\(\frac{10}{x + 2} ; \frac{5}{2 x - 4} ; \frac{1}{6 - 3 x}\)
Giải:
a)
\(x^{3} - 1 = \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\)
Mẫu chung: \(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\)
\(\frac{4 x^{2} - 3 x + 5}{\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)} ; \frac{\left(\right. 1 - 2 x \left.\right) \left(\right. x - 1 \left.\right)}{\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)} ; \frac{- 2}{\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)}\)
b)
\(2 x - 4 = 2 \left(\right. x - 2 \left.\right) , 6 - 3 x = 3 \left(\right. 2 - x \left.\right) = - 3 \left(\right. x - 2 \left.\right)\)
Mẫu chung:
\(6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)\) \(\frac{60 \left(\right. x - 2 \left.\right)}{6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)} ; \frac{15 \left(\right. x + 2 \left.\right)}{6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)} ; - \frac{2 \left(\right. x + 2 \left.\right)}{6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)}\)