Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)
\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)
b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)
\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)
\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)

\(MTC:\left(x-3\right)^2\left(x^2+3x+9\right)\)
\(\frac{x}{x^3-27}=\frac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\frac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{2x}{x^2-6x+9}=\frac{2x}{\left(x-3\right)^2}=\frac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{1}{x^2+3x+9}=\frac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(MTC:2\left(x-1\right)\left(x+1\right)\)
\(\frac{x-1}{2x+2}=\frac{x-1}{2\left(x+1\right)}=\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{x+1}{2x-2}=\frac{x+1}{2\left(x-1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{1}{1-x^2}=-\frac{1}{\left(x-1\right)\left(x+1\right)}=-\frac{2}{2\left(x-1\right)\left(x+1\right)}\)
\(MTC:2\left(x+1\right)\left(x^2-x+1\right)\)
\(\frac{1}{x^3+1}=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{3}{2x+2}=\frac{3}{2\left(x+1\right)}=\frac{3\left(x^2-x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x^2-x+1}=\frac{4\left(x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)

b) \(\hept{\begin{cases}\frac{5}{2x+6}=\frac{5}{2\left(x+3\right)}\\\frac{3}{x^2-9}=\frac{3}{\left(x+3\right)\left(x-3\right)}\end{cases}}\)
\(\Rightarrow MTC=2\left(x+3\right)\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{5}{2\left(x+3\right)}=\frac{5\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}\\\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{6}{2\left(x-2\right)\left(x+3\right)}\end{cases}}\)
CÒn lại tương tự nhé !

b)\(\frac{10}{x + 2} ; \frac{5}{2 x - 4} ; \frac{1}{6 - 3 x}\)
Giải:
a)
\(x^{3} - 1 = \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\)
Mẫu chung: \(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\)
\(\frac{4 x^{2} - 3 x + 5}{\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)} ; \frac{\left(\right. 1 - 2 x \left.\right) \left(\right. x - 1 \left.\right)}{\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)} ; \frac{- 2}{\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)}\)
b)
\(2 x - 4 = 2 \left(\right. x - 2 \left.\right) , 6 - 3 x = 3 \left(\right. 2 - x \left.\right) = - 3 \left(\right. x - 2 \left.\right)\)
Mẫu chung:
\(6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)\) \(\frac{60 \left(\right. x - 2 \left.\right)}{6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)} ; \frac{15 \left(\right. x + 2 \left.\right)}{6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)} ; - \frac{2 \left(\right. x + 2 \left.\right)}{6 \left(\right. x + 2 \left.\right) \left(\right. x - 2 \left.\right)}\)

a) \(\frac{3x+6}{x^2-4}=\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3}{x-2}\)( ĐKXĐ : x ≠ ±2 )
\(\frac{2x+6}{x^3+3x^2-9x-27}=\frac{2\left(x+3\right)}{x^2\left(x+3\right)-9\left(x+3\right)}=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x^2-9\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)( ĐKXĐ : x ≠ ±3 )
MTC : ( x - 2 )( x - 3 )( x + 3 )
=> \(\hept{\begin{cases}\frac{3}{x-2}=\frac{3\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3\left(x^2-9\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3x-27}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\\\frac{2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{4x-4}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\end{cases}}\)
b) \(\frac{x^2-4x+4}{2x^2-3x+1}=\frac{\left(x-2\right)^2}{2x^2-2x-x+1}=\frac{\left(x-2\right)^2}{2x\left(x-1\right)-\left(x-1\right)}=\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}\)( ĐKXĐ : \(\hept{\begin{cases}x\ne1\\x\ne\frac{1}{2}\end{cases}}\))
\(\frac{x+4}{2x-2}=\frac{x+4}{2\left(x-1\right)}\)( ĐKXĐ : x ≠ 1 )
MTC : \(2\left(x-1\right)\left(2x-1\right)\)
=> \(\hept{\begin{cases}\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}=\frac{2\left(x^2-4x+4\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2-8x+8}{2\left(x-1\right)\left(2x-1\right)}\\\frac{x+4}{2\left(x-1\right)}=\frac{\left(x+4\right)\left(2x-1\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2+7x-4}{2\left(x-1\right)\left(2x-1\right)}\end{cases}}\)
c) \(\frac{6a}{a-b}\)( ĐKXĐ : a ≠ b ) ; \(\frac{2b}{b-a}=\frac{-2b}{a-b}\)( ĐKXĐ : a ≠ b) ; \(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)( ĐKXĐ : a ≠ ±b )
MTC : \(\left(a-b\right)\left(a+b\right)\)
=> \(\frac{6a}{a-b}=\frac{6a\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{6a^2+6ab}{\left(a-b\right)\left(a+b\right)}\)
\(\frac{-2b}{a-b}=\frac{-2b\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{-2ab-2b^2}{\left(a-b\right)\left(a+b\right)}\)
\(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)
d) \(\frac{x}{x^2+11x+30}=\frac{x}{x^2+5x+6x+30}=\frac{x}{x\left(x+5\right)+6\left(x+5\right)}=\frac{x}{\left(x+5\right)\left(x+6\right)}\)( ĐKXĐ : x ≠ -5 ; x ≠ -6 )
\(\frac{5}{x^2+9x+20}=\frac{5}{x^2+4x+5x+20}=\frac{5}{x\left(x+4\right)+5\left(x+4\right)}=\frac{5}{\left(x+4\right)\left(x+5\right)}\)( ĐKXĐ : x ≠ -4 ; x ≠ -5 )
MTC : \(\left(x+4\right)\left(x+5\right)\left(x+6\right)\)
=> \(\hept{\begin{cases}\frac{x}{\left(x+5\right)\left(x+6\right)}=\frac{x\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{x^2+4x}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\\\frac{5}{\left(x+4\right)\left(x+5\right)}=\frac{5\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{5x+30}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\end{cases}}\)
Sai chỗ nào bạn bỏ qua nhé
rzddddddfg