...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2024

a. Câu này đơn giản em tự giải

b.

Xét hai tam giác OIM và OHN có:

\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)

\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)

Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)

Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)

\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)

\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)

c.

Xét hai tam giác OAI và ONA có:

\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)

\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))

\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)

Xét hai tam giác OCN và OIC có:

\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)

\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C

\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)

Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:

\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)

O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC

\(\Rightarrow OH=\dfrac{1}{2}BC\)

Xét hai tam giác OHN và EBC có:

\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)

\(\Rightarrow BC^2=2HN.EB\) (2)

(1);(2) \(\Rightarrow BN.BH=HN.BE\)

\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)

\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

NV
20 tháng 1 2024

loading...

1 tháng 11 2016

a=-4x^2+25 với x>=-25/4

9 tháng 11 2016

sai oy ban à

a: Diện tích ban đầu là \(8\cdot20=160\left(m^2\right)\)

Độ dài cạnh góc vuông thứ nhất của phần bị thu hồi là

20-2x(m)

Độ dài cạnh góc vuông thứ hai của phần bị thu hồi là:

8-x(m)

Diện tích phần bị thu hồi là:

\(T=\frac12\left(20-2x\right)\left(8-x\right)=\frac12\left(2x-20\right)\left(x-8\right)=\left(x-10\right)\left(x-8\right)\left(m^2\right)\)

b: Diện tích đất bị thu hồi là 455:13=35(m)

=>(x-10)(x-8)=35

=>\(x^2-18x+80-35=0\)

=>\(x^2-18x+45=0\)

=>(x-3)(x-15)=0

=>\(\left[\begin{array}{l}x-3=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=15\left(loại\right)\end{array}\right.\)

Vậy: x=3

14 tháng 1 2017

Ta có:

\(x^4+4=\left(x^4+4x^2+4\right)-4x^2\)

=\(\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

=> \(x^4+4\) chia hết cho \(x^2+2x+a\) khi \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)⋮\left(x^2+2x+a\right)\)

=> a = 2.

Xét một phân số trong tổng:

\(\frac{1}{\sqrt{k} + \sqrt{k + 1}}\)

Nhân cả tử và mẫu với \(\sqrt{k + 1} - \sqrt{k}\), ta được:

\(\frac{1}{\sqrt{k} + \sqrt{k + 1}} = \frac{\sqrt{k + 1} - \sqrt{k}}{\left(\right. \sqrt{k} + \sqrt{k + 1} \left.\right) \left(\right. \sqrt{k + 1} - \sqrt{k} \left.\right)} = \sqrt{k + 1} - \sqrt{k}\)

Vậy:

\(A=\left(\right.\sqrt{2}-\sqrt{1}\left.\right)+\left(\right.\sqrt{3}-\sqrt{2}\left.\right)+\cdots+\left(\right.\sqrt{n + 1}-\sqrt{n}\left.\right)\)

Cộng các hạng tử lại, ta thấy \(\sqrt{2}\) ở số hạng đầu bị trừ đi ở số hạng sau, \(\sqrt{3}\) cũng vậy,… chỉ còn:

\(A = \sqrt{n + 1} - \sqrt{1} = \sqrt{n + 1} - 1\)

Đáp số: \(\sqrt{n + 1} - 1\)

Tham khảo

9 tháng 8 2016

  goi V la` can bac hai , abs la` gia tri tuyet doi 
ta co P=V((x^3+3)^2/x^2) + V(x-2)^2 =abs((x^3+3)/x)+abs(x-2) 
do x thuoc Z nen abs(x-2) thuoc Z 
vay de~ P thuoc Z thi` (x^3+3) chia het cho x 
=>x thuoc uoc cua 3 
=>X={-3;-1;1;3} =>S={5;11;13}

a: Xét (HA/2) có

ΔAEH nội tiếp

AH là đường kính

Do đó: ΔAEH vuông tại E

=>HE⊥AB tại E

Xét (HA/2) có

ΔAFH nội tiếp

AH là đường kính

Do đó: ΔAFH vuông tại F

=>HF⊥AC tại F

Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)

Ta có: \(AE\cdot AB=AF\cdot AC\)

=>\(\frac{AE}{AC}=\frac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\frac{AE}{AC}=\frac{AF}{AB}\)

Do đó: ΔAEF~ΔACB

b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(\hat{AFE}=\hat{AHE}\)

\(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{AFE}=\hat{ABC}\)

ΔOAC cân tại O

=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)

\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)

=>AO⊥ FE

c: Xét (O) có

ΔAKH nội tiếp

AH là đường kính

Do đó: ΔAKH vuông tại K

=>HK⊥AT tại K

Xét ΔAHT vuông tại H có HK là đường cao

nên \(AK\cdot AT=AH^2\)

=>\(AK\cdot AT=AE\cdot AB\)

=>\(\frac{AK}{AE}=\frac{AB}{AT}\)

Xét ΔAKB và ΔAET có

\(\frac{AK}{AE}=\frac{AB}{AT}\)

góc KAB chung

Do đó: ΔAKB~ΔAET

=>\(\hat{AKB}=\hat{AET}\)

d: ta có: A,C,B,K cùng thuộc (O)

=>ACBK nội tiếp

=>\(\hat{ACB}+\hat{AKB}=180^0\)

\(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)

nên \(\hat{IKA}=\hat{ICB}\)

Xét ΔIKA và ΔICB có

\(\hat{IKA}=\hat{ICB}\)

góc KIA chung

Do đó: ΔIKA~ΔICB