
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=x^3+12x^2+48x+64=\left(x+4\right)^3\)
\(B=x^3-6x^2+12x-8=\left(x-2\right)^3\)
\(D=\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-\left(z\right)^2\)
\(E=\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)
\(C=\left(2x+y^2\right)^3=\left(2x\right)^2+3\left(2x\right)^2y^2+3.2x\left(y^2\right)^3+\left(y^2\right)^3\)


\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2

a) x2 + y2 - 12x + 2y + 37 = 0
<=> (x2 - 12x + 36) + (y2 + 2y + 1) = 0
<=> (x - 6)2 + (y + 1)2 = 0
<=> \(\hept{\begin{cases}x-6=0\\y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=6\\y=-1\end{cases}}\)
b) x2 + 2y2 - 2xy - 2x + 2 = 0
<=> (x2 - 2xy + y2) - 2(x - y) + 1 + (y2 - 2y + 1) = 0
<=> (x - y)2 - 2(x - y) + 1 + (y - 1)2 = 0
<=> (x - y - 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x-y-1=0\\y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y+1\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
a) x2 + y2 - 12x + 2y + 37 = 0
⇔ ( x2 - 12x + 36 ) + ( y2 + 2y + 1 ) = 0
⇔ ( x - 6 )2 + ( y + 1 )2 = 0
\(\hept{\begin{cases}\left(x-6\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-6\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ⇔ \(\hept{\begin{cases}x-6=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}\)
⇔ x = 6 ; y = -1
b) x2 + 2y2 - 2xy - 2x + 2 = 0
Nhân 2 vào từng vế
⇔ 2( x2 + 2y2 - 2xy - 2x + 2 ) = 2.0
⇔ 2x2 + 4y2 - 4xy - 4x + 4 = 0
⇔ ( x2 - 4xy + 4y2 ) + ( x2 - 4x + 4 ) = 0
⇔ ( x - 2y )2 + ( x - 2 )2 = 0
\(\hept{\begin{cases}\left(x-2y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-2y\right)^2+\left(x-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ⇔ \(\hept{\begin{cases}x-2y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
⇔ x = 2 ; y = 1

mk lm mẫu cho bạn 1 phần nhé
a) \(A=3x^2+y^2+10x-2xy+26\)
\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)
\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)
Dấu "=" xảy ra <=> \(x=y=-2,5\)
Vậy MIN A = 13,5 khi x = y = - 2,5


\(x^2-y^2-5x+5y\)
\(=\left(x^2-y^2\right)-\left(5x-5y\right)\)
\(=\left(x+y\right)\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x+y-5\right)\left(x-y\right)\)

b/ (12x + 7)2(3x + 2)(2x + 1) = 3
=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3
- Nhân 2 vế cho 24 ta đc:
(144x2 + 168x + 49) (144x2 + 168x + 48) = 72
- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a + 9)(a - 8) = 0
=> a = -9 hoặc a = 8
- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm
- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6
Vậy x = -1/3 , x = -5/6
\(2x^2+12x+18-2y^2\)
\(=2\left(x^2+6x+9-y^2\right)\)
\(=2\left[\left(x^2+6x+9\right)-y^2\right]\)
\(=2\left[\left(x+3\right)^2-y^2\right]\)
\(=2\left(x+3+y\right)\left(x+3-y\right)\)