Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)
\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)
\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)
\(=\left(a-b\right)^3\left(a+b\right)\)


a)27x3+27x2+9x+1+x+1/3
=(3x+1)3+1/3(3x+1)
=(3x+1)[(3x+1)2+1/3]
=(3x+1)(9x2+6x+4/3)
b)8xy3-5xyz-24y2+15z
=(8xy3-24y2)-(5xyz-15z)
=8y2(xy-3)-5z(xy-3)
=(xy-3)(8y2-5z)
c)x4+x3+x+1
=x3(x+1)+(x+1)
=(x+1)(x3+1)
=(x+1)(x+1)(x2-x+1)
=(x+1)2(x2-x+1)
d)a6-a4-2a3+2a2
=a4(a-1)(a+1)-2a2(a-1)
=(a-1)(a5+a4-2a2)
=(a-1)(a5-a4+2a4-2a2)
=(a-1)[a4(a-1)+2a2(a-1)(a+1)]
=(a-1)(a-1)(a4+2a3+2a2)
=(a-1)2(a4+2a3+2a2)
\(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)




2a2b2+2a2c2+2b2c2-a4-b4-c4
=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4
=2(ab)2-(a+b)2+2c2(a2+b2)+c4
=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]
=2(ab)2-(b2+a2-c2)2
=[(a+b)2-c2][-(a-b)2+c2]
=(a+b-c)(a+b+c)(c-a+b)(a+c-b)
\(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(a^4+2a^2b^2+b^4\right)+\left(2b^2c^2+2a^2c^2\right)-c^4\)
\(=2\left(ab\right)^2-\left(a+b\right)^2+2c^2\left(a^2+b^2\right)+c^4\)
\(=2\left(ab\right)^2-\left[\left(a+b\right)^2-2c^2\left(a^2+b^2\right)+c^4\right]\\ =2\left(ab\right)^2-\left(b^2+a^2-c^2\right)^2\)
=\(\left[\left(a+b\right)^2-c^2\right]\left[-\left(a-b\right)^2+c^2\right]\\ =\left(a+b+c\right)\left(a+b+c\right)\left(c-a+b\right)\left(a+c-b\right)\)

\(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2+a^4+b^4+c^4\right)\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c+a-b\right)\left(c-a+b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Nếu a,b,c là độ dài 3 cạnh thì ta có:
c + a > b (bất đẳng thức tam giác)
a + b > c (bất đẳng thức tam giác)
b + c > a (bất đẳng thức tam giác)
mà a,b,c > 0
=> a + b + c dương
a + c - b dương
a + b - c dương
b + c - a dương
=> A dương
1: =(a+b)^3+c^3-3ab(a+b)-3acb
=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)