
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x^6-y^6=\text{(x-y)(y+x)(y^2-xy+x^2)(y^2+xy+x^2)}\) b)\(x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2\)

x6+x4+x2y2+y4-y6=(x6-y6)+(x4+x2y2+y4)=(x2-y2)(x4+x2y2+y4)+(x4+x2y2+y4)=(x4+x2y2+y4)(x2-y2+1)=((x2+y2)2-x2y2)(x2-y2+1)
=(x2+xy+y2)(x2-xy+y2)(x2-y2+1)
x4-30x2+31x-30=(x4+x)-(30x2-30x+30)=x(x+1)(x2-x+1)-30(x2-x+1)=(x2-x+1)(x2+x-30)=(x2-x+1)(x-5)(x+6)


Từ điểm B, C vẽ các đường thẳng lần lượt đi qua AC và AB và cắt AC tại D, AB tại E. Sao cho BE = DC.
Xét tam giác BEC và tam giác DCB có:
BE = DC ( chứng minh trên )
ˆB=ˆC( giả thiết )
Cạnh BC chung
=> Tam giác BEC = tam giác DCB ( c.g.c )
Vậy nếu ˆB=ˆCthì AB = AC ( đpcm )
x³ -7x +6
= x³ -x²+x²-x-6x+6
= x²(x-1)+x(x-1)-6(x-1)
= (x-1)(x² +x-6)
= (x-1)(x²-2x+3x-6)
=(x-1)(x-2)(x+3)

\(x^2+5x-6\)
\(\Leftrightarrow x^2-x+6x-6\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)\)
Chúc bạn học tốt
\(x^3-x+3x^2y+xy^2+y^3-y\)
\(=\left(x^3+3x^2y+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^6-y^6\)\(=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
đúng 100% bài này mik mới vừa làm nhà cô

a) x2 - 9 = x2- 32
= (x-3)(x+3)
b) 4x2 - 25 = (2x)2 - 52
= (2x-5)(2x+5)
c) x6- y6 = (x3)2 - (y3)2
= (x3-y3)(x3+y3)
= (x-y)(x2-xy+y2)(x2+xy+y2)(x+y)

Bạn tham khảo link này nhé :
https://olm.vn/hoi-dap/detail/11579055142.html
~Study well~
#SJ
\(a,\)\(x^{16}-1\)
\(=\left(x^8+1\right)\left(x^8-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^4-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\)

a, x^2 + 2xy + y^2 - x - y - 12
= (x^2 + 2xy + y^2) - (x + y) - 16 + 4
= (x + y)^2 - 4^2 - (x + y - 4)
= (x + y - 4)(x + y + 4) - (x + y - 4)
= (x + y - 4)(x + y + 4 - 1)
= (x + y - 4)(x + y + 3)
b, x^6 + 27
= (x^2)^3 + 3^3
= (x^2 + 3)[(x^2)^2 - 3x^2 + 3^2]
= (x^2 + 3)(x^4 - 3x^2 + 9)
c, x^7 + x^5 + 1
=x^7 - x^6 + x^5 - x^3 + x^2 + x^6 - x^5 + x^4 - x^2 + x + x^5 - x^4 + x^3 - x + 1
= (x^2 + x + 1)(x^5 - x^4 + x^3 - x+1)
x 6 - y 6 = x 3 2 - y 3 2 = x 3 + y 3 x 3 - y 3 = x + y x 2 - x y + y x - y x 2 + x y + y 2