
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


4x(x+y)(x+y+z)(x+z)+y2z2=4(x2+xy+xz)(x2+xy+xz+yz)+y2z2=4(x2+xy+xz)2+4yz(x2+xy+xz)+y2z2=(2(x2+xy+xz)+yz)2=(2x2+2xy+2xz+yz)

a) \(x^3-3x+1-3x^2=\left(x^3+1\right)-\left(3x^2+3x\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1+y\right)\left(x+1-y\right)\)

a) nhận xét hệ số : 1 + 4 - 29 + 24 = 0
=> x3 + 4x2 - 29x + 24 = x2(x-1) + 5x(x-1) - 24(x-1)
= (x-1)(x2+5x-24) = (x-1)(x-3)(x+8)
b) ...
a) \(x^3+4x^2-29x+24\)=\(\left(x+8\right)\left(x^2-4x+3\right)\)=\(\left(x+8\right)\left(x^2-x-3x+3\right)\)=\(\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)=\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)=\(x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)^2\)

\(\left(x^2+x-1\right)^2+4x^2+4x-1\)
\(=\left(x^2+x-1\right)^2+4\left(x^2+x-1\right)+3\)
\(=\left(x^2+x-1\right)^2+x^2+x-1+3\left(x^2+x-1\right)+3\)
\(=\left(x^2+x-1\right)\left(x^2+x-1+1\right)+3\left(x^2+x-1+1\right)\)
\(=\left(x^2+x-1\right)\left(x^2+x\right)+3\left(x^2+x\right)\)
\(=\left(x^2+x\right)\left(x^2+x-1+3\right)\)
\(=x\left(x+1\right)\left(x^2+x+2\right)\)
Chúc bạn học tốt.

x2 + 4x + y - 9y2
<=> x(x + 4) + y(1 + 9y)
<=> (x + y)(x + 4 + 1 + 9y)
<=> (x + y)(x + 9y + 5)
bí rồi

Ta có: \(x^3-x^2-x-2\)
\(=x^3-2x^2+x^2-2x+x-2\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+1\right)\)

\(x^2-4x+13\)
\(=x^2-4x+4+9\)
\(=\left(x-1\right)^2+9\)
=>Đa thức này không thể phân tích thành nhân tử nha bạn
đề có sai ko