
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(-2x^2-4x+30\)
\(=-2x^2-10x+6x+30\)
\(=-2x\left(x+5\right)+6\left(x+5\right)\)
\(=\left(-2x+6\right)\left(x+5\right)\)
\(=-2\left(x-3\right)\left(x+5\right)\)
Chúc bạn học tốt.

Nghịch xíu :v
a, \(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)-2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+2\right)\)
b, \(x^2+4x+3\)
\(=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
Chúc bạn học tốt!!!

\(2x^2+4x+2-2y^2=2.\left(x^2+2x+1-y^2\right)\)= \(2.\left(\left(x+1\right)^2-y^2\right)=2.\left(x+1+y\right)\left(x+1-y\right)\)
\(_{\left(-2\right)\left(y-x-1\right)\left(y+x+1\right)}\)

\(2x^3+x^2-4x-12=2x^3-4x^2+5x^2-10x+6x-12\)
\(=2x^2\left(x-2\right)+5x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+5x+3\right)\)
\(=\left(x-2\right)\left[2x\left(x+1\right)+3\left(x+1\right)\right]\)
\(=\left(x-2\right)\left(x+1\right)\left(2x+3\right)\)
Xin lỗi bạn, mình làm sai.
\(2x^3+x^2-4x-12=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(2x^2+5x+6\right)\)


Bài làm:
1) Ta có: \(2x^2+5xy+2y^2\)
\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(2x+y\right)\left(x+2y\right)\)
2) Ta có: \(2x^2+2xy-4y^2\)
\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=2\left(x+2y\right)\left(x-y\right)\)
\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)


a) \(4x^4+4x^3+5x^2+2x+1\)
= \(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)
=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)
Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)
Thay vào (1), ta có:
\(x^2\left(a^2-4+2a+5\right)\)
=\(x^2\left(a^2+2a+1\right)\)
=\(x^2\left(a+1\right)^2\)
=\(\left[x\left(a+1\right)\right]^2\)
=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)
=\(\left(2x^2+1+x\right)^2\)
\(=\left(2x^2+x+1\right)^2\)
a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1
Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1
<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1
Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)
Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2
b) 3x4 + 11x3 - 7x2 - 2x + 1
= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1
= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )
= ( 3x - 1 )( x3 + 4x2 - x - 1 )
= -2 ( x2 + 2x + 1 ) + 32
= -2 ( x +1 )2 + 32
= - 2 [ (x + 1 )2 - 16 ]
= -2 [ (x + 1 ) 2 - 42 ]
= -2 ( x + 1 - 4 ) ( x + 1 + 4)
= -2 ( x - 3 ) ( x +5 )
\(-2x^2-4x+30\)
\(=-2\left(x^2+2x+1\right)+32\)
\(=-2\left(x+1\right)^2+32\)
\(=-2\left[\left(x+1\right)^2-16\right]\)
\(=-2\left[\left(x+1\right)^2-4^2\right]\)
\(=-2\left(x+1-4\right)\left(x+1+4\right)\)
\(=-2\left(x-3\right)\left(x+5\right)\)