Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow30x^2-72x+55x-132-42x+66=0\\ \Leftrightarrow30x^2-59x-66=0\\ \Delta=3481-4\cdot\left(-66\right)\cdot30=11401\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{59-\sqrt{11401}}{60}\\x=\dfrac{59+\sqrt{11401}}{60}\end{matrix}\right.\)

a. \(5x^2-6x+1\)
=\(5x^2-x-5x+1\)
\(=\left(x-1\right)\left(5x-1\right)\)
a. 5x^2-6x+15x2−6x+1
=5x^2-x-5x+15x2−x−5x+1
=\left(x-1\right)\left(5x-1\right)=(x−1)(5x−1)

a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)

6x3+5x2+6x-8
= 6x3-4x2+9x2-6x+12x-8
=2x2.(3x-2)+3x.(3x-2)+4.(3x-2)
=(3x-2)(2x2+3x+4)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

Câu 4:
a: Sửa đề: E đối xứng D qua O
Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có \(\hat{ADC}=90^0\)
nên ADCE là hình chữ nhật
b:
ADCE là hình chữ nhật
=>AE//CD và AE=CD
ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
=>DB=DC
mà DC=AE
nên DB=AE
Vì AE//CD
nên AE//BD
Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
=>AD cắt BE tại trung điểm của mỗi đường
mà I là trung điểm của AD
nên I là trung điểm của BE
c: D là trung điểm của BC
=>\(DB=DC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
ΔADB vuông tại D
=>\(AD^2+DB^2=AB^2\)
=>\(AD^2=10^2-6^2=64=8^2\)
=>AD=8(cm)
ΔABC có AD là đường cao
nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot8\cdot12=4\cdot12=48\left(\operatorname{cm}^2\right)\)
O là trung điểm của AC
=>\(S_{BOA}=\frac12\cdot S_{BAC}=\frac{48}{2}=24\left(\operatorname{cm}^2\right)\)
Câu 3:
a: ĐKXĐ của A là x<>4
\(x^2-3x=0\)
=>x(x-3)=0
=>\(\left[\begin{array}{l}x=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=3\end{array}\right.\)
Thay x=0 vào A, ta được:
\(A=\frac{0-5}{0-4}=\frac{-5}{-4}=\frac54\)
Thay x=3 vào A, ta được:
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
b: \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}=\frac{x^2-10x+25}{2x\left(x-5\right)}\)
\(=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c: Đặt P=A:B
\(=\frac{x-5}{x-4}:\frac{x-5}{2x}\)
\(=\frac{x-5}{x-4}\cdot\frac{2x}{x-5}=\frac{2x}{x-4}\)
Để P là số nguyên thì 2x⋮x-4
=>2x-8+8⋮x-4
=>8⋮x-4
=>x-4∈{1;-1;2;-2;4;-4;8;-8}
=>x∈{5;3;6;2;8;0;12;-4}
Kết hợp ĐKXĐ, ta được:x∈{3;6;2;8;12;-4}
Bài 1:
a: \(6x^2-3xy=3x\cdot2x-3x\cdot y=3x\left(2x-y\right)\)
b: \(x^2-y^2-6x+9\)
\(=x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
=(x-3-y)(x-3+y)
c: \(x^2+5x-6\)
\(=x^2-x+6x-6\)
=x(x-1)+6(x-1)
=(x-1)(x+6)
Bài 2:
a: Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)\)
\(=x^2+4x+4-\left(x^2-2x-3\right)\)
\(=x^2+4x+4-x^2+2x+3\)
=6x+7
b: \(\left(x^3-2x^2+5x-10\right):\left(x-2\right)\)
\(=\frac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}\)
\(=x^2+5\)

1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)