K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y

(34 > x > y > 0; m)

Vì mảnh đất hình chữ nhật có nửa chu vi bằng 37m nên ta có x + y = 37

Đường chéo hình chữ nhật dài 26m nên ta có phương trình: x 2 + y 2 = 26 2

Suy ra hệ phương trình:  x + y = 34 x 2 + y 2 = 676 ⇔ y = 37 − x x 2 + 37 − x 2 = 676     1

Giải phương trình (1) ta được:

2 x 2 – 68 x + 480 = 0 ⇔ x 2 – 34 x + 240 = 0 ⇔ x   ( x – 10 ) – 24 ( x – 10 ) = 0

⇔ (x – 10) (x – 24) = 0  ⇔ x = 10 ⇒ y = 24 L x = 24 ⇒ y = 10 N

Vậy chiều dài mảnh đất ban đầu là 24m

Đáp án: A

12 giờ trước (16:07)

Bài 3:

a: Xét ΔAHB vuông tại H có \(\sin B=\frac{AH}{AB}\)

=>\(AH=AB\cdot\sin B=8\cdot\sin40\) ≃5,14

b: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(HB^2=AB^2-AH^2\)

=>\(HB=\sqrt{AB^2-AH^2}\) ≃6,13

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)

=>\(AC=\frac{AH}{\sin C}\) ≃10,28

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(HC^2=10,28^2-5,14^2\)

=>HC≃8,9

BC=BH+CH

=8,9+6,13=15,03

Bài 2:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=9^2+12^2=81+144=225=15^2\)

=>BC=15(cm)

ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH=\frac{9\cdot12}{15}=7,2\) (cm)

b: Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{9}{15}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}\)\(90^0-37^0=53^0\)

c: Xét ΔABC có AE là phân giác

nên \(\frac{EB}{AB}=\frac{EC}{AC}\)

=>\(\frac{EB}{9}=\frac{EC}{12}\)

=>\(\frac{EB}{3}=\frac{EC}{4}\)

mà EB+EC=BC=15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{EB}{3}=\frac{EC}{4}=\frac{EB+EC}{3+4}=\frac{15}{7}\)

=>\(EB=\frac{15}{7}\cdot3=\frac{45}{7}\left(\operatorname{cm}\right);EC=\frac{15}{7}\cdot4=\frac{60}{7}\left(\operatorname{cm}\right)\)

Bài 1:

Nửa chu vi mảnh đất là 86:2=43(m)

Gọi chiều rộng mảnh đất là x(m)

(ĐIều kiện: x>0)

Chiều dài mảnh đất là 43-x(m)

Chiều dài sau khi tăng thêm 2 m là: 43-x+2=45-x(m)

Chiều rộng sau khi giảm 3m là x-3(m)

Diện tích mảnh đất giảm đi \(60m^2\) nên ta có:

x(43-x)-(45-x)(x-3)=60

=>\(43x-x^2-\left(45x-135-x^2+3x\right)=60\)

=>\(43x-x^2-\left(-x^2+48x-135\right)=60\)

=>\(43x-x^2+x^2-48x+135=60\)

=>-5x=60-135=-75

=>x=15(nhận)

Vậy: Chiều rộng là 15m

Chiều dài là 43-15=28(m)

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)

=> chiều dài mảnh đất là x+6 (m)

Theo định lý Pytago ta có độ dài đường chéo là:

x2+(x+6)2=2x2+12x+36(m)2x2+12x+36=654.x2x2+12x+36=6516x23316x2+12x+36=0

25 tháng 1 2022

loading...  

7 tháng 5 2015

Nửa chu vi mảnh đất là:

40:2=20(m)

Ta lấy các số có tổng là 20 và hai số nhân lạ được 96

12x8=96(m2)

Đs: Chiều dài:12m

      Chiều rộng:8m  

14 tháng 6 2020

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b ( m ) ( \(0< a,b< 110\) )

Theo bài, ta có hệ phương trình: \(\hept{\begin{cases}a-b=17\\ab=110\end{cases}}\)

Đặt \(c=-b\)\(\Rightarrow\hept{\begin{cases}a+c=17\\a.c=-110\end{cases}}\)

\(\Rightarrow\)a và c là nghiệm của của phương trình: \(x^2-17x-110=0\)

\(\Delta=\left(-17\right)^2-4.1.\left(-110\right)=729\)

\(\Rightarrow\sqrt{\Delta}=\sqrt{729}=27\)

\(\Rightarrow x_1=\frac{-\left(-17\right)+27}{2}=\frac{17+27}{2}=\frac{44}{2}=22\)

\(x_2=\frac{-\left(-17\right)-27}{2}=\frac{17-27}{2}=\frac{-10}{2}=-5\)

\(\Rightarrow a=x_1=22\)\(c=x_2=-5\)

mà \(-b=c\)\(\Rightarrow b=-c=-\left(-5\right)=5\)

Vậy chiều dài là 22m, chiều rộng là 5m

14 tháng 6 2020

yes minh ngĩ thế .

19 tháng 11 2018

Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y

(21 > x > y > 0; m)

Vì mảnh đất hình chữ nhật có chu vi bằng 42m nên ta có (x + y). 2 = 42

Đường chéo hình chữ nhật dài 15m nên ta có phương trình: x 2   +   y 2   =   152

Suy ra hệ phương trình:

x + y .2 = 42 x 2 + y 2 = 225 ⇔ x + y = 21 x 2 + y 2 = 225 ⇔ y = 21 − x x 2 + 21 − x 2 = 225       1

Giải phương trình (1) ta được:

2 x 2 − 42 x + 216 = 0 ⇔ x = 9 x = 12

Với x = 9 thì y = 12 (loại)

Với x = 12 thì y = 9 (thỏa mãn)

Vậy chiều rộng mảnh đất ban đầu là 9m.

Đáp án: C

22 tháng 9

Gọi:

  • \(x\) là chiều dài ban đầu (m)
  • \(y\) là chiều rộng ban đầu (m)

Theo đề bài:

  1. Chu vi hình chữ nhật là 64m, tức:

\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)

  1. Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:

\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)

Mở rộng và đơn giản:

\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)


Hệ phương trình:

\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)


Giải hệ:

Từ phương trình thứ nhất:

\(y = 32 - x\)

Thay vào phương trình thứ hai:

\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)

Thay \(x = 18\) vào:

\(y = 32 - 18 = 14\)


Kết luận:

Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk

Nửa chu vi mảnh vườn là 64:2=32(m)

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)

(Điều kiện: x>y>0)

Nửa chu vi mảnh vườn là 32m nên x+y=32(1)

Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)

nên ta có: (x+2)(y+3)=xy+88

=>xy+3x+2y+6=xy+88

=>3x+2y=82(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)

=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)

Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của hình chữ nhật(Điều kiện: 0<a<14; 0<b<14 và \(a\ge b\))

Vì chu vi của mảnh đất là 28m nên ta có phương trình:

2(a+b)=28

\(\Leftrightarrow a+b=14\)(1)

Ta có: a+b=14(cmt)

mà \(a\ge b\)

nên 2a>14

hay a>7

\(\Leftrightarrow b< 7\)

Vì độ dài đường chéo mảnh đất là 10m nên ta có phương trình:

\(a^2+b^2=10^2=100\)(2)

Từ (1) và (2) ta lập được hệ phương trình: 

\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2+b^2-28b+196-100=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left[{}\begin{matrix}b=6\left(nhận\right)\\b=8\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-6=8\left(nhận\right)\\b=6\end{matrix}\right.\)

Vậy: Chiều dài của mảnh đất là 8m; chiều rộng của mảnh đất là 6m

1 tháng 2 2021

Gọi x là chiều dài mảnh đất (0<x<14; x>y)

Gọi y là chiều rộng mảnh vườn (0<y<14)

Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)

Vì đường chéo mảnh đất bằng 10m nên ta có PT:

x2+y2=100 (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)(TM)

 

Vậy HPT có nghiệm (x;y)= (8;6)

-Độ dài 2 cạnh mảnh đất lần lượt là: 8cm và 6cm

24 tháng 6 2016

Phân tích: Ta nhận thấy: Nửa chu vi = Chiều dài + Chiều rộng
Dạng toán: Tìm hai số khi biết Tổng và tỉ số của 2 số đó
( Tổng = 64, Tỉ số giữa Chiều rộng và Chiều dài là 3/5, trong đó chiều rộng tương ứng với 3 phần, chiều dài tương ứng với 5 phần)
Giải: Theo bài ra ta có sơ đồ: ( vẽ theo hướng dẫn)
Tổng số phần bằng nhau là: 
3 + 5 = 8 (phần)
Giá trị của 1 phần là: 
64 : 8 = 8 (m)
Chiều rộng mảnh đất hình chữ nhật là: 
8 x 3 = 24 (m)
Chiều dài mảnh đất hình chữ nhật là:
64 – 24 = 40 (m)
Diện tích mảnh đất hình chữ nhật là:
60 x 24 = 1440 (m2)
Đáp số: 1440 m2

24 tháng 6 2016

mơn nhiều ạ