Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi vận tốc ô tô đi nửa đoạn đường đầu là x; nửa đoạn còn lại là y (y > x > 0)
y = 25%x + x = \(\frac{5}{4}\)x
\(\Rightarrow\frac{x}{y}=\frac{4}{5}\)
Gọi thời gian ô tô đi nửa đoạn đường đầu là m và thời gian đi nửa đoạn đường còn lại là n (m > n > 0)
=> m - n = \(\frac{45}{60}=\frac{3}{4}\)(h)
Ta có: x.m = y.n (cùng bằng \(\frac{1}{2}\) quãng đường AB)
=> \(\frac{x}{y}=\frac{n}{m}=\frac{4}{5}\)
=> \(\frac{n}{4}=\frac{m}{5}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{n}{4}=\frac{m}{5}=\frac{m-n}{5-4}=\frac{\frac{3}{4}}{1}=\frac{3}{4}\)
\(\Rightarrow\begin{cases}n=\frac{3}{4}.4=3\\m=\frac{3}{4}.5=\frac{15}{4}\end{cases}\)
Vậy thời gian thực tế ô tô đi hết đoạn đường AB là:
m + n = \(\frac{15}{4}+3=\frac{27}{4}=\) 6h45'

Câu 3:
Trong 2 giờ ô tô và xe máy đã đi được tổng quãng đường là:
(50 + 40) x 2 = 180(km)
15 phút = \(\frac14\) giờ
Khi xe máy xuất phát ô tô đã đi được quãng đường là:
50 x \(\frac14\) = 12,5(km)
Quãng đường AB dài là:
180 + 12,5 = 192,5(km)
Kết luận quãng đường AB dài là: 192,5km