
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Xét tứ giác ABCD có:
\(\begin{array}{l} \widehat A + \widehat B + \widehat C + \widehat D = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)

Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).
Áp dụng tính chất đường phân giác của tam giác, ta có:
\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)
Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)
Vậy x = 7,2 (đvđd).

Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.
Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:
\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)
Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).
Vậy x = 4 (đvđd).

Trong Hình 4.24 có \(\widehat {MPH} = \widehat {NPH}\) nên PH là tia phân giác của \(\widehat {MPN}\).
Áp dụng tính chất đường phân giác của tam giác, ta có:
\(\dfrac{{MP}}{{NP}} = \dfrac{{MH}}{{NH}}\) hay \(\dfrac{5}{x} = \dfrac{3}{{5,1}}\)
Suy ra \(x = \dfrac{{5.5,1}}{3} = 8,5\) (đvđd).
Vậy x = 8,5 (đvđd).

a: Xét tứ giác DIHK có
góc DIH=góc DKH=góc KDI=90 độ
nên DIHK là hình chữ nhật
b: Xét tứ giác IHAK có
IH//AK
IH=AK
Do đó: IHAK là hình bình hành
=>B là trung điểm chung của IA và HK
Xét ΔIKA có IC/IK=IB/IA
nên BC//KA
Xét ΔIDA có IB/IA=IM/ID
nên BM//DA
=>B,C,M thẳng hàng

Những hình khối có dạng ở hình 11 được gọi là hình chóp tứ giác đều.
Bài 1 : (4a - b).(4a + b) = 16a2 + (-b2)
(\(x^2y\) + 2y)(\(x^2\)y - 2y = \(x^4\).y2 + (- 4y2)
(\(\dfrac{3}{4}\)\(x\) + \(\dfrac{3}{5}\)y)(\(\dfrac{3}{5}\)y - \(\dfrac{3}{4}\)\(x\)) = \(\dfrac{9}{25}\)y2 + (- \(\dfrac{9}{16}\)\(x^2\))
2; (\(x+2\))(\(x^2\) - 2\(x\) + 4) = \(x^3\) + 8
(3\(x\) + 2y)(9\(x^2\) - 6\(xy\) + 4y2) = 27\(x^3\) + 8y3
3, (5- 3\(x\))(25 + 15\(x\) + 9\(x^2\)) = 125 + ( -27\(x^3\))
(\(\dfrac{1}{2}\)\(x\) - \(\dfrac{1}{5}\)y).(\(\dfrac{1}{4}\)\(x^2\) + \(\dfrac{1}{10}\)\(xy\) + \(\dfrac{1}{25}\)y2 = \(\dfrac{1}{8}\)\(x^3\) + (-\(\dfrac{1}{125}\)y3)
em cảm ơn cô ạ