Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{4}{x+1}=\frac{2}{3x+1}\Leftrightarrow4\left(3x+1\right)=2\left(x+1\right)\Leftrightarrow12x+4=2x+2\)
\(\Leftrightarrow12x-2x=2-4\Leftrightarrow10x=-2\Leftrightarrow\frac{-1}{5}\)
Vậy x=-1/5
\(\frac{4}{x+1}=\frac{2}{3x+1}\left(x\ne-1;x\ne-\frac{1}{3}\right)\)
=> \(4\left(3x+1\right)=2\left(x+1\right)\)
=> \(12x+4=2x+2\)
=> \(12x-2x=2-4\)
=> \(10x=-2\)
=> \(5x=-1\)(chia cho 5)
=> \(x=-\frac{1}{5}\left(tm\right)\)
Vậy \(x=-\frac{1}{5}\)

b)
\(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(21.\frac{1}{2}\right)\)
\(\Rightarrow\frac{41}{9}:\frac{41}{18}-7< x< \left(\frac{16}{5}:\frac{16}{5}+\frac{9}{2}.\frac{76}{45}\right):\frac{21}{2}\)
\(\Rightarrow2-7< x< \left(1+\frac{38}{5}\right):\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{43}{5}:\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{86}{105}\)
Vì \(x\in Z\left(gt\right)\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0\right\}.\)
Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}.\)

Th1:x^2+/2x-2/=x+x^2-1
/2x-2/=x+x^2-1-x^2
/2x-2/=x-1+x^2-x^2
/2x-2/=x-1
+)nếu x-1=2x-2 thì
x-2x=-2+1
-x=-1
x=1
+) nếu x-1=-(2x-2) thì
x+2x=2+1
3x=3
x=1
Vậy th1 x=1
Th2:-(x^2+/2x-2/)=x+x^2-1
Tương tự

Ta có:
\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot5^n\)
\(2^n\left(\frac{1}{2}+4\right)=9\cdot5^n\)
\(\frac{9}{2}\cdot2^n=9\cdot5^n\)
Tức: \(9\cdot\frac{1}{2}\cdot2^n=9\cdot5^n\)
Suy ra: \(2^{n-1}=5^n\)
Nhận thấy: \(n-1< n\)
Hơn nữa \(2< 5\)
Do đó: \(2^{n-1}< 5^n\)
Vậy không có n thỏa mãn

2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
=> \(\hept{\begin{cases}x=18\\y=12\\z=9\end{cases}}\)
Ta có: \(2x=3y=4z\) nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\), suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.6=18\\y=3.4=12\\z=3.3=9\end{cases}}\)
Vậy \(x=18\), \(y=12\) và \(z=9\).

a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)
\(\Rightarrow-4< n< 2\)
NHững câu còn lại lm tưng tự!

\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1

2, <=> \(\left|2x-6\right|+\left|2x+5\right|=11\)
<=> \(\left|6-2x\right|+\left|2x+5\right|=11\)
Ta có : \(\left|6-2x\right|+\left|2x+5\right|\ge\left|6-2x+2x-5\right|=\left|11\right|=11\)
Dấu = xảy ra khi : \(\left(6-2x\right)\left(2x+5\right)\ge0\)
Áp dụng tính chất ngoài-đồng trong-khác :D ta có :
\(-\frac{5}{2}\le x\le3\).
Bài 1 :
\(a)\) Ta có :
\(2^{31}+8^{10}+16^8=2^{31}+2^{30}+2^{32}=2^{30}\left(2+1+4\right)=2^{30}.7\) chia hết cho 7
Vậy \(2^{31}+8^{10}+16^8⋮7\)