K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

\(\left(x-5\right)-\left(2x+7\right)=-8\\ x-5-2x-7+8=0\\ -x=4\\ x=-4\)

15 tháng 1 2022

Tách nhỏ câu hỏi ra bạn

30 tháng 3 2022

:v lớp 10

15 tháng 5 2017

Trả lời :

undefined

15 tháng 5 2017

Trả lời:

undefined

18 tháng 4 2017

Giải:

Tên tam giác

Tên 3 đỉnh

Tên 3 góc

Tên 3 cạnh

ABI

A,B,I

AB, BI, IA

AIC

A,I,C

AI, IC, CA

ABC

A,B,C

AB, BC, CA

18 tháng 4 2017

Sách Giáo Khoa

Giải bài 44 trang 95 SGK Toán 6 Tập 2 | Giải toán lớp 6

18 tháng 4 2017

Giải:

Hình

Tên góc

(cách viết thông thường)

Tên đỉnh

Tên cạnh

Tên góc

(Cách viết kí hiệu)

a

Góc yCz, góc zCy, góc C

C

Cy,Cz

b

Góc MTP, PTM, T

Góc TMP, PMT,M

Góc TPM, MPT,P

T

M

P

TM,TP

MT,MP

PT,PM

c

Góc xPy,yPx,P

Góc ySz,zSy

P

S

Px, Py

Sy, Sz

Tham khảo:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

 

18 tháng 4 2017

Giải:

a)

.

b) Các cặp góc bù nhau là:

2 tháng 3 2018

a)

b) Các cặp góc bù nhau là:

1.d, 2.c, 3.a

29 tháng 11 2017

Nối 1 – d ; 2 – c ; 3 – a

Bài giải:

Câu

Đúng

Sai

a) 134 . 4 + 16 chia hết cho 4.

x

b) 21 . 8 + 17 chia hết cho 8.

x

c) 3 .100 + 34 chia hết cho 6.

x

15 tháng 4 2017

Tính chất chia hết của một tổng. Luyện tập

Câu 8:

a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)

Ta có: \(4+4^2+\cdots+4^{2025}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21

b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)

\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30

Câu 7:

a: \(A=2+2^2+2^3+\cdots+2^{99}\)

=>\(2A=2^2+2^3+\cdots+2^{100}\)

=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)

=>\(A=2^{100}-2\)

b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)

=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(8B=-7^{50}+1\)

=>\(B=\frac{-7^{50}+1}{8}\)

27 tháng 8

Câu 7

a) \(A=2+2^2+2^3+\ldots+2^{99}\).
Đây là cấp số nhân từ \(2^{1}\) đến \(2^{99}\). Tổng:

\(A = \sum_{k = 1}^{99} 2^{k} = \frac{2 \left(\right. 2^{99} - 1 \left.\right)}{2 - 1} = 2 \left(\right. 2^{99} - 1 \left.\right) = 2^{100} - 2.\)

b) \(B=1-7+7^2-7^3+\ldots+7^{48}-7^{49}\).
Đây là tổng các \(7^{k}\) với dấu luân phiên, tức là tổng cấp số nhân với tỉ số \(r = - 7\), từ \(k = 0\) đến \(k = 49\):

\(B = \sum_{k = 0}^{49} \left(\right. - 1 \left.\right)^{k} 7^{k} = \sum_{k = 0}^{49} \left(\right. - 7 \left.\right)^{k} = \frac{1 - \left(\right. - 7 \left.\right)^{50}}{1 - \left(\right. - 7 \left.\right)} = \frac{1 - 7^{50}}{8} .\)

(Đó là dạng rút gọn chính xác.)

Câu 8

a) Dạng đề: \(1+4+4^2+4^3+\ldots+4^{2025}\) chia hết cho \(21\) ?

Hãy xét chu kỳ của \(4^{n}\) theo mod \(21\). Ta có

\(4^{1} \equiv 4 , 4^{2} \equiv 16 , 4^{3} = 64 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)

vậy \(4^{3} \equiv 1 \left(\right. m o d 21 \left.\right)\) — nghĩa là dãy lũy thừa của 4 theo mod 21 có chu kỳ 3. Tổng mỗi nhóm ba số liên tiếp

\(4^{0} + 4^{1} + 4^{2} = 1 + 4 + 16 = 21 \equiv 0 \left(\right. m o d 21 \left.\right) .\)

Tập các số từ \(4^{0}\) đến \(4^{2025}\)\(2026\) số. Vì \(2026 = 3 \cdot 675 + 1\), nên ta có \(675\) nhóm 3 (mỗi nhóm tổng chia hết cho 21) và dư một số là \(4^{2025}\). Do \(2025\) chia hết cho \(3\), ta có \(4^{2025} \equiv 4^{0} \equiv 1 \left(\right. m o d 21 \left.\right)\).
Vậy tổng toàn bộ hợp lại

\(\equiv 675 \cdot 0 + 1 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)

không chia hết cho \(21\).

Kết luận: Như đề bài viết (tới \(4^{2025}\)), tổng không chia hết cho \(21\).
(Có lẽ đề thực tế muốn mũ cuối là \(2024\) thay vì \(2025\); khi mũ cuối là \(2024\) thì có \(2025\) số, tức \(2025 = 3 \cdot 675\) nhóm đầy đủ nên tổng sẽ chia hết cho \(21\).)


b) Dạng đề: \(5 + 5^{2} + 5^{3} + \hdots + 5^{2024}\) chia hết cho \(30\) ?

Gọi \(S = \sum_{k = 1}^{2024} 5^{k}\). Ta kiểm tra chia hết cho \(2 , 3 , 5\) (vì \(30 = 2 \cdot 3 \cdot 5\)):

  • Chia cho \(5\): mỗi \(5^{k}\)\(5\) là thừa số, nên tổng \(S\) chia hết cho \(5\).
  • Chia cho \(2\): với modulo \(2\), \(5 \equiv 1\). Do đó mỗi \(5^{k} \equiv 1 \left(\right. m o d 2 \left.\right)\). Có \(2024\) số nên tổng theo modulo \(2\)\(2024 \cdot 1 \equiv 0 \left(\right. m o d 2 \left.\right)\). Vậy chia hết cho \(2\).
  • Chia cho \(3\): \(5 \equiv 2 \left(\right. m o d 3 \left.\right)\). Lũy thừa luân phiên: \(5^{1} \equiv 2 , \textrm{ }\textrm{ } 5^{2} \equiv 1 , \textrm{ }\textrm{ } 5^{3} \equiv 2 , \textrm{ }\textrm{ } 5^{4} \equiv 1 , \ldots\) (chu kỳ 2). Vì \(2024\) là số chẵn, các cặp \(\left(\right. 5^{2 m - 1} + 5^{2 m} \left.\right) \equiv 2 + 1 \equiv 0 \left(\right. m o d 3 \left.\right)\). Do đó tổng chia hết cho \(3\).

Từ đó \(S\) chia hết cho \(2 , 3 , 5\) đồng thời, nên chia hết cho \(30\).