
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Giải:
Tên tam giác |
Tên 3 đỉnh |
Tên 3 góc |
Tên 3 cạnh |
|
A,B,I |
|
AB, BI, IA |
|
A,I,C |
|
AI, IC, CA |
|
A,B,C |
|
AB, BC, CA |

Giải:
Hình |
Tên góc (cách viết thông thường) |
Tên đỉnh |
Tên cạnh |
Tên góc (Cách viết kí hiệu) |
a |
Góc yCz, góc zCy, góc C |
C |
Cy,Cz |
|
b |
Góc MTP, PTM, T Góc TMP, PMT,M Góc TPM, MPT,P |
T M P |
TM,TP MT,MP PT,PM |
|
c |
Góc xPy,yPx,P Góc ySz,zSy |
P S |
Px, Py Sy, Sz |
|

Bài giải:
Câu |
Đúng |
Sai |
a) 134 . 4 + 16 chia hết cho 4.
|
x |
|
b) 21 . 8 + 17 chia hết cho 8.
|
|
x |
c) 3 .100 + 34 chia hết cho 6.
|
|
x |

Câu 8:
a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)
Ta có: \(4+4^2+\cdots+4^{2025}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)
\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21
b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)
\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30
Câu 7:
a: \(A=2+2^2+2^3+\cdots+2^{99}\)
=>\(2A=2^2+2^3+\cdots+2^{100}\)
=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)
=>\(A=2^{100}-2\)
b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)
=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)
=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)
=>\(8B=-7^{50}+1\)
=>\(B=\frac{-7^{50}+1}{8}\)
Câu 7
a) \(A=2+2^2+2^3+\ldots+2^{99}\).
Đây là cấp số nhân từ \(2^{1}\) đến \(2^{99}\). Tổng:
\(A = \sum_{k = 1}^{99} 2^{k} = \frac{2 \left(\right. 2^{99} - 1 \left.\right)}{2 - 1} = 2 \left(\right. 2^{99} - 1 \left.\right) = 2^{100} - 2.\)
b) \(B=1-7+7^2-7^3+\ldots+7^{48}-7^{49}\).
Đây là tổng các \(7^{k}\) với dấu luân phiên, tức là tổng cấp số nhân với tỉ số \(r = - 7\), từ \(k = 0\) đến \(k = 49\):
\(B = \sum_{k = 0}^{49} \left(\right. - 1 \left.\right)^{k} 7^{k} = \sum_{k = 0}^{49} \left(\right. - 7 \left.\right)^{k} = \frac{1 - \left(\right. - 7 \left.\right)^{50}}{1 - \left(\right. - 7 \left.\right)} = \frac{1 - 7^{50}}{8} .\)
(Đó là dạng rút gọn chính xác.)
Câu 8
a) Dạng đề: \(1+4+4^2+4^3+\ldots+4^{2025}\) chia hết cho \(21\) ?
Hãy xét chu kỳ của \(4^{n}\) theo mod \(21\). Ta có
\(4^{1} \equiv 4 , 4^{2} \equiv 16 , 4^{3} = 64 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)
vậy \(4^{3} \equiv 1 \left(\right. m o d 21 \left.\right)\) — nghĩa là dãy lũy thừa của 4 theo mod 21 có chu kỳ 3. Tổng mỗi nhóm ba số liên tiếp
\(4^{0} + 4^{1} + 4^{2} = 1 + 4 + 16 = 21 \equiv 0 \left(\right. m o d 21 \left.\right) .\)
Tập các số từ \(4^{0}\) đến \(4^{2025}\) có \(2026\) số. Vì \(2026 = 3 \cdot 675 + 1\), nên ta có \(675\) nhóm 3 (mỗi nhóm tổng chia hết cho 21) và dư một số là \(4^{2025}\). Do \(2025\) chia hết cho \(3\), ta có \(4^{2025} \equiv 4^{0} \equiv 1 \left(\right. m o d 21 \left.\right)\).
Vậy tổng toàn bộ hợp lại
\(\equiv 675 \cdot 0 + 1 \equiv 1 \left(\right. m o d 21 \left.\right) ,\)
không chia hết cho \(21\).
Kết luận: Như đề bài viết (tới \(4^{2025}\)), tổng không chia hết cho \(21\).
(Có lẽ đề thực tế muốn mũ cuối là \(2024\) thay vì \(2025\); khi mũ cuối là \(2024\) thì có \(2025\) số, tức \(2025 = 3 \cdot 675\) nhóm đầy đủ nên tổng sẽ chia hết cho \(21\).)
b) Dạng đề: \(5 + 5^{2} + 5^{3} + \hdots + 5^{2024}\) chia hết cho \(30\) ?
Gọi \(S = \sum_{k = 1}^{2024} 5^{k}\). Ta kiểm tra chia hết cho \(2 , 3 , 5\) (vì \(30 = 2 \cdot 3 \cdot 5\)):
- Chia cho \(5\): mỗi \(5^{k}\) có \(5\) là thừa số, nên tổng \(S\) chia hết cho \(5\).
- Chia cho \(2\): với modulo \(2\), \(5 \equiv 1\). Do đó mỗi \(5^{k} \equiv 1 \left(\right. m o d 2 \left.\right)\). Có \(2024\) số nên tổng theo modulo \(2\) là \(2024 \cdot 1 \equiv 0 \left(\right. m o d 2 \left.\right)\). Vậy chia hết cho \(2\).
- Chia cho \(3\): \(5 \equiv 2 \left(\right. m o d 3 \left.\right)\). Lũy thừa luân phiên: \(5^{1} \equiv 2 , \textrm{ }\textrm{ } 5^{2} \equiv 1 , \textrm{ }\textrm{ } 5^{3} \equiv 2 , \textrm{ }\textrm{ } 5^{4} \equiv 1 , \ldots\) (chu kỳ 2). Vì \(2024\) là số chẵn, các cặp \(\left(\right. 5^{2 m - 1} + 5^{2 m} \left.\right) \equiv 2 + 1 \equiv 0 \left(\right. m o d 3 \left.\right)\). Do đó tổng chia hết cho \(3\).
Từ đó \(S\) chia hết cho \(2 , 3 , 5\) đồng thời, nên chia hết cho \(30\).
\(\left(x-5\right)-\left(2x+7\right)=-8\\ x-5-2x-7+8=0\\ -x=4\\ x=-4\)
Tách nhỏ câu hỏi ra bạn