K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

7: =(x-4)(x+2)

4: \(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y-3\right)\)

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

13 tháng 9 2017

Cả hai baif hộ mik nhé

1 tháng 10 2016

dài v

1 tháng 10 2016

a) x(x-y)+(x-y)=(x+1)(x-y)

b) 2x+2y -x(x+y)= 2(x+y)-x(x+y)=(2-x)(x+y)

Bài 2:

a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)

b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)

c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)

d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)

e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)

f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)

Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

Bài 2:

a: ĐKXĐ: x∉{2;-2}

b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)

c: Thay x=-5 vào A, ta được:

\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)

d: Để A nguyên thì 3x⋮x-2

=>3x-6+6⋮x-2

=>6⋮x-2

=>x-2∈{1;-1;2;-2;3;-3;6-6}

=>x∈{1;2;4;0;5;-1;8;-4}

Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}

Bài 1:

a: \(A=x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)

b: \(B=x^2-y^2+8x-8y\)

=(x-y)(x+y)+8(x-y)

=(x-y)(x+y+8)

c: \(C=x^2+4x-5\)

\(=x^2+5x-x-5\)

=x(x+5)-(x+5)

=(x+5)(x-1)

Hỏi đáp Toán

a) ta có: \(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^o\Rightarrow\widehat{AMB}+\widehat{DMC}=90^0\)

đồng thời: \(\widehat{AMB}+\widehat{ABM}=90^0\)

\(\Rightarrow\widehat{DMC}=\widehat{ABM}\)

xét tam giác ABM và tam giác DMC có:

\(\widehat{MAB}=\widehat{MDC}=90^0\\ \widehat{ABM}=\widehat{DMC}\)

do đó tam giác ABM đồng dạng tam giác DMC(g-g)

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{MD}{DC}\Rightarrow AB.DC=AM.MD\)

mà AM=MD, nên : \(AB.DC=AM.AM\)

b) vì tam giác ABM đồng dạng tam giác DMC nên:

\(\dfrac{BM}{MC}=\dfrac{AB}{MD}\:hay\:\dfrac{BM}{MC}=\dfrac{AB}{AM}\)

đồng thời: \(\widehat{MAB}=\widehat{MDC}=90^0\)

do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)

Bài 3: 

Gọi x(m) là chiều rộng của mảnh đất(Điều kiện: x>0)

Chiều dài của mảnh đất là: x+5(m)

Theo đề, ta có phương trình:

2x+5=25

\(\Leftrightarrow2x=20\)

hay x=10(thỏa ĐK)

Vậy: Diện tích của mảnh đất là 150m2